• Title/Summary/Keyword: inorganic composites

Search Result 221, Processing Time 0.025 seconds

Reduction of Formaldehyde Emission from Particleboardsby Bio-Scavengers

  • Eom, Young-Geun;Kim, Jong-Sung;Kim, Sumin;Kim, Jin-A;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.29-41
    • /
    • 2006
  • This study was to investigate the effect of adding additive as tannin, rice husk and charcoal, for reducing the formaldehyde emission level, on the adhesion properties of urea-formaldehyde (UF) resin for particleboard. We controlled the hot-pressing time, temperature and pressure to determine the bonding strength and formaldehyde emission. Blends of various UF resin/additives (tannin, rice husk and charcoal) compositions were prepared. To determine and compare the effect of additives (tannin, rice husk and charcoal) content, 0, 5, 10 and 15%, by weight of UF resin, were used. $NH_4Cl$ as hardener added. To determine the level of formaldehyde emission, we used the desiccator, perforator and 20 L-small chamber method. The formaldehyde emission level decreased with increased additions of additive (except rice husk). Also, increased hot-pressing time decreased formaldehyde emission level. At a charcoal replacement ratio of only 15%, the formaldehyde emission level is under F ✩ ✩ ✩ ✩ grade (emit < $0.3mg/{\ell}$). Curing of the high tannin additive content in this adhesive system indicated that the bonding strength increased. But, in the case of rice husk and charcoal, the bonding strength was much lower due to the inorganic substance. Furthermore, rice husk was poor in bonding strength as well as formaldehyde emission than tannin and charcoal.

Influence of Filler and Cure Systems on Whitening of EPDM Composites by Formation of Metal Salt (충전 시스템과 가교 시스템이 금속염 형성에 의한 EPDM 복합체의 백화에 미치는 영향)

  • Chung, Hye-Seung;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.47 no.3
    • /
    • pp.210-215
    • /
    • 2012
  • Whitening phenomena of the EPDM composites with different inorganic filler compositions which were aged at $90^{\circ}C$ for 7 days in air and tap water atmospheres, respectively, were investigated. The aged samples in tap water containing stearic acid exhibited severe whitening phenomena, while all the samples aged in air did not show any whitening. Depending on the filler compositions, there was no big difference in the whitening phenomena. The whitening materials were analyzed using gas chromatography/mass spectrometry (GC/MS), image analysis, energy-dispersive X-ray spectroscopy (EDX), and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The whitening materials were identified to be salts of stearic acid. The salts of stearic acid were formed by reaction of metal cation in tap water and stearic acid in the sample.

Interface Characteristics of Epoxy Composite Treated with Silane Coupling Agent (실란 결합제 처리된 에폭시 수지 복합재료의 계면 특성)

  • Lee, Jae-Yeong;Lee, Hong-Gi;Sim, Mi-Ja;Kim, Sang-Uk
    • Korean Journal of Materials Research
    • /
    • v.11 no.12
    • /
    • pp.1009-1013
    • /
    • 2001
  • The effects of coupling agent on the interface characteristics between epoxy resin and natural zeolite were studied by SEM, optical microscope and universal testing machine (UTM). Epoxy resin as a matrix was diglycidyl ether of bisphenol A (DGEBA)/4,4'-methylene dianiline (MDA)/malononitrile (MN) system and natural zeolite as an inorganic fillet was produced in Korea. With the increment of zeolite content, tensile strength decreased and it was due to the different elastic moduli of two materials. When external stress was loaded on the composites, the stress concentrated on the weakly bonded interface and crack grew easily. To improve the interface characteristics, the surface of the natural zeolite was treated with the silane coupling agent and it was found that the tensile strength was increased. The morphology of the interface showed that the bonding characteristics were modified by coupling agent.

  • PDF

Characterization of silica nano-particle filled poly (ethylene 2,6-naphthalate) (실리카 나노입자 충진 폴리에틸렌 나프탈레이트의 특성)

  • Ahn, Seon-Hoon;Kim, Seong-Hun;Im, Seung-Soon;Lee, Seung-Goo
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.52-55
    • /
    • 2003
  • Poly (ethylene 2, 6-naphthalate) (PEN) has been used for a high performance engineering plastics such as fiber, film, and packaging, because of excellent physical properties and outstanding gas barrier characteristics [1-2]. However, the application of PEN is limited because PEN exhibits a relatively high melt viscosity. Recently, many researches for organic/inorganic composites by applying nano-particles to the polymer matrix have been carried out [3], and the nano-particles exhibited greatly improved mechanical and rheological properties [4]. (omitted)

  • PDF

POSS/Polyurethane Hybrids and Nanocomposites: A Review on Preparation, Structure and Performance

  • Diao, Shuo;Mao, Lixin;Zhang, Liqun;Wang, Yiqing
    • Elastomers and Composites
    • /
    • v.50 no.1
    • /
    • pp.35-48
    • /
    • 2015
  • Polyhedral oligomeric silsesquioxane (POSS) is an important inorganic-organic hybrid material with a three-dimensional structure. Polyurethane (PU) is a widely applied polymer that has versatile properties with the change of two phase structure. When POSS is incorporated into PU by physical or chemical methods, many properties can be greatly improved, such as mechanical properties, thermal stability, biodegradation resistance, and water resistance. This paper reviews the recent progress in preparation, structure, and performance of POSS-modified polyurethane from the viewpoint of physical blending and chemical modification.

Recent Advances in Polybenzimidazole (PBI)-based Polymer Electrolyte Membranes for High Temperature Fuel Cell Applications

  • Vijayakumar, Vijayalekshmi;Kim, Kihyun;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.643-651
    • /
    • 2019
  • Polybenzimidazole (PBI), an engineering polymer with well-known excellent thermal, chemical and mechanical stabilities has been recognized as an alternative to high temperature polymer electrolyte membranes (HT-PEMs). This review focuses on recent advances made on the development of PBI-based HT-PEMs for fuel cell applications. PBI-based membranes discussed were prepared by various strategies such as structural modification, cross-linking, blending and organic-inorganic composites. In addition, intriguing properties of the PBI-based membranes as well as their fuel cell performances were highligted.

Durability and Evaluation of Plastic Insulator for the Outdoor (옥외용 프라스틱 애자의 내구성과 평가)

  • 조한구;강동필;한동희;김인성
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1993.10a
    • /
    • pp.97-102
    • /
    • 1993
  • The application of epxy composite materials for the outdoor insulating systems has some significant advan-tages compared with conventional inorganic materials, that is low weight in combination with high mechanical strength, small dimensions and design versatility. The paper describes the results of high voltage investigations carried out different aging types of epoxy resin insulator and silicone grease coating. The insulators have been exposed 3000 hours to weather-o-meter and 12 months to outdoor. In this connection, the main study of paper is form the basis of develop-ment of principal technologies of epoxy composites which ard: (1)manufacturing of insulator, (2)high vol-tage testing under dry and wet condition, (3)mechani-cal properties, (4)accelerated weather-ometer test and outdoor exposed, artificial polution.

  • PDF

A Study on the Preparation and Flame Retardancy of Compatibilized Blend/Layered Silicate Nanocomposites with Inorganic Flame Retardant (무기계난연제 첨가형 상용화블렌드/층상실리케이트 나노복합재료의 제조 및 난연특성에 관한 연구)

  • Kang, Young-Goo;Song, Jong-Hyeok
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.79-85
    • /
    • 2006
  • Olefinic compatibilized blend(R-PP/R-PE)/layered silicate composites have been prepared by melt intercalation technique directed from $Na^{+}$ montmorillonite(MMT) or organophilic montmorillonites while using magnesium hydroxide as flame retardant. Morphology and flammability properties were characterized by X-ray diffraction(XRD), transmission electron microscopy(TEM), scanning electron microscopy(SEM), thermogravimetry analysis(TGA), limiting oxygen index(LOI), UL94 test. It is found that the compatibilized blend/layered silicate(Cloisite 20A) nanocomposites have a mixed immiscible-intercalated structure and there is better intercalation when a compatibilizer is combined with the polymer and layered silicate to be melt blended. A very large increase in the LOI value was observed with hybrid filler addition and further enhancement in thermal stability and compatibility of blend was obtained for the compatibilized blend containing small amount of layered silicate.