• Title/Summary/Keyword: inoculum concentration

Search Result 179, Processing Time 0.024 seconds

Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum

  • Song, Minjae;Yun, Hye Young;Kim, Young Ho
    • Journal of Ginseng Research
    • /
    • v.38 no.2
    • /
    • pp.136-145
    • /
    • 2014
  • Background: This study aimed to develop a biocontrol system for ginseng root rot caused by Fusarium cf. incarnatum. Methods: In total, 392 bacteria isolated from ginseng roots and various soils were screened for their antifungal activity against the fungal pathogen, and a bacterial isolate (B2-5) was selected as a promising candidate for the biocontrol because of the strong antagonistic activity of the bacterial cell suspension and culture filtrate against pathogen. Results: The bacterial isolate B2-5 displayed an enhanced inhibitory activity against the pathogen mycelial growth with a temperature increase to $25^{\circ}C$, produced no pectinase (related to root rotting) an no critical rot symptoms at low [$10^6$ colony-forming units (CFU)/mL] and high ($10^8CFU/mL$) inoculum concentrations. In pot experiments, pretreatment with the bacterial isolate in the presumed optimal time for disease control reduced disease severity significantly with a higher control efficacy at an inoculum concentration of $10^6CFU/mL$ than at $10^8CFU/mL$. The establishment and colonization ability of the bacterial isolates on the ginseng rhizosphere appeared to be higher when both the bacterial isolate and the pathogen were coinoculated than when the bacterial isolate was inoculated alone, suggesting its target-oriented biocontrol activity against the pathogen. Scanning electron microscopy showed that the pathogen hyphae were twisted and shriveled by the bacterial treatment, which may be a symptom of direct damage by antifungal substances. Conclusion: All of these results suggest that the bacterial isolate has good potential as a microbial agent for the biocontrol of the ginseng root rot caused by F. cf. incarnatum.

Production of Gomisin J from Suspension Cultured Cells of Schisandra chinensis Baillon in Airlift-type Bioreactor (생물반응기를 이용한 오미자의 현탁배양세포로부터 Gomisin J의 생산)

  • Hwang, Sung-Jin;Pyo, Byoung-Sik;Hwang, Baik
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.6
    • /
    • pp.478-482
    • /
    • 2004
  • Suspension culture of Schisandra chinensis for production of gomisin J was perfomed in bioreactor. The inoculum size and initial sucrose concentration had significant effect on the cell growth and gomisin J accumulation. The maximum dry cell weight $(DCW;\;43.5\;g/{\ell})$ and gomisin J content $(0.71\;{\times}\;10^{-3}\;{\mu}g/g\;DCW)$ were obtained at inoculum size of 100 g fresh cell weight (FCW) per liter and MB5 medium containing 6% sucrose after 8 weeks of culture. The effect of oxygen supply on the cell growth and gomisin J accumulation was also investigated in an airlift-type bioreactor. The optimal cell growth and gomisin J content was obtained under 0.5 vvm. The productivity of gomisin J was 0.7 fold in bioreactor culture lower than that obtained in a flask cultivation.

Optimization of Submerged Culture Conditions for Mycelial Growth and Exopolysaccharides Production by Agaricus blazei

  • Kim, Hyun-Han;Na, Jeong-Geol;Chang, Yong-Keun;Chun, Gie-Taek;Lee, Sang-Jong;Jeong, Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.944-951
    • /
    • 2004
  • The influences of inoculum size, pH, and medium composition on mycelial growth and exopolysaccharides (EPS) production were investigated in shake flasks and in a bioreactor. The optimum inoculum size for both mycelial growth and EPS production was identified to be 10% (v/v) in shake flask cultures. The optimal initial pH for mycelial growth and EPS production in shake flask cultures were found to be 5.0 and 7.0, respectively. However, the optimal pH was 5.0 for both mycelial growth and EPS production in bioreactor cultures where the pH was regulated. The optimal mass ratio of the two major carbon sources, glucose to dextrin, was 1:4. The optimal mass ratio of the two major nitrogen sources, yeast extract to soy tone peptone, was 2:1. When 500 mg $1^{-1}$ of $MnSO_4-5H_2O$ was added to the bioreactor culture, both mycelial growth and EPS production were enhanced by approximately 10%. Under the optimized conditions, a mycelial biomass of 9.85 g $1^{-1}$ and an EPS concentration of 4.92 g $1^{-1}$ were obtained in 4 days.

The Principle and Application of Bioremediation (생물학적 복구법(Bioremediation)의 원리와 응용)

  • 정재춘;박창희;이성택
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.2
    • /
    • pp.3-13
    • /
    • 1996
  • The efficiency of bioremedation can be measured by the enumeration of microorganism, respiration rate and decomposition rate. The side-effect can be measured by using Daphnia, oyster larvae and rainbow trout. Oxygen transfer could be a problem in the on-site treatment. For these, hydrogen peroxide can be used for solvents such as benzenes. Oleophilic nitrogen and phosphorus can be added for the treatment of oil pollution. Mixed microbial population or pure culture can be used for the inoculum. The pure culture used is Pseudomonas and Phanerochate. Sometimes enzymes are added and Photodegadation is coupled to increase the efficiency. For the treatment of oil pollution residue on soil such as waste lubrication oil and machine oil sludges, top soil of 15cm∼20cm depth is plowed and oil residue with approximately 5% concentration is applied. The optimum pH range is 7∼8, the ratio of phosphorus to hydrocarbon is 1:800. Appropriate drainage is necessary. For the treatment of marine oil pollution residue, addition of oleophilic fertilizer is effective. Air pollutiant such as oder can be treated by bioremediation. In this case, biofilters or biosrubbers are used for the reactor.

  • PDF

Biodegradation of Diesel in Sea Water by Rhodococcus fascians Isolated from a Petroleum-contaminated Site (유류 오염 토양에서 분리된 Rhodococcus fascians를 이용한 해수에서의 디젤유의 분해)

  • Koo, Ja-Ryong;Moon, Jun-Hyung;Yun, Hyun-Shik
    • KSBB Journal
    • /
    • v.24 no.5
    • /
    • pp.453-457
    • /
    • 2009
  • Contamination of marine environment with hazardous and toxic chemicals is more common these days. Bioremediation is the application of microorganism or microbial processes to degrade environmental contaminant. Because of low water solubility and volatility of diesel, bioremediation is more efficient than physical and chemical methods. The objective of this study is biodegradation of diesel in sea water by using Rhodococcus fascians which is isolated petroleum-contaminated soil. R. fascians was cultured on sea water containing diesel to determine the diesel degradability. Changes in biodegradability of diesel with various inoculum sizes, diesel concentrations, initial pH, and culture temperature were analyzed by TPH analysis using gas chromatography. The inoculum size 2% was effective for biodegrdation of diesel in sea water by R. fascians. When diesel concentration was 5%, the growth of cell was inhibited by the toxicity of diesel. The optimal temperature and initial pH for degradation of diesel in sea water were $27^{\circ}C$ and pH 8.

Biodegradation of Pyrene in Marine Environment (해양환경에서 Pyrene의 생분해)

  • 황순석;송홍규
    • Korean Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.53-60
    • /
    • 1999
  • The biodegradation of recalcitrant polycyclic aromatic hydrocarbon, pyrene was investigated in microcosm simulating the beach sand and seawater. The natural biodegradation rates of pyrene were between 30-2,200 ng/g(ml)/day in beach sand and seawater when the pyrenc loading rates were 100- 1,000 ppm at 5-$20^{\circ}C$. The effects of the inoculum size, pyrene concentralion, incubation temperature and surfactant addition were investigated in fertilized (Inipol EAP 22) samples. Generally the biodegradation in beach sand was higher than that in seawater. A mixed inoculum (Pseudomonus, Acinetobacter, Moruxella) showed the 3,120 nglglday of biodegradation rate in beach sand with 200 ppm pyrene, which was 7.8 times higher than the natural biodegradation rate. The highest transformation rate, 4,860 ng/g/day was obtained in the bioaugmented beach sand (1,000 ppm pyrene). The glucose and surfactant addition to enhance the removal have negatively influenced on the biodegradation of pyrene. In case ol surfactants, CMC (critical micell concentration) might bc the control factor for the biodegradation.

  • PDF

Development of Yeast Strains as Feed for Aquaculture: Possible Yeast Strains (양식을 위한 먹이사료로서의 Yeast 균주의 개발: 가능성 있는 효모 균주)

  • 문정혜;탁건태;김중균
    • Journal of Life Science
    • /
    • v.6 no.2
    • /
    • pp.135-141
    • /
    • 1996
  • Possible yeast strains that could be used as feed for aquaculture were studied. It was shown that the maximum specific growth rate and the biomass yield of Kluyveromyces fragilis yeast and Candida utilis yeast under optimum pH and temperature were much higher than those of Saccharomyces cervisiae yeast which had been as established yeast diet for rotifer culture. Hence, this work was focussed on the growth characteristics of the two yeasts through flask dultures for mass production. With 5% inoculum dosage, the best values of $\mu$$_{max}$ and OD$_{max}$ were obtained with on 2.5% fructose medium and 2% YE medium for K. fragilis and C. utilis, respectively, where the values of $\mu$$_{max}$ and OD$_{max}$ were found to be 0.73 hr$^{-1}$ and 3.00 for K. fragilis and 0.59 hr$^{-1}$ and 2.80 for C. utilis. It was also found that the lag phase of the growth incresed with increasing initial zinc and NaCl concentrations and decreased with increasing inoculum dosage. Both yeasts could survive relatively well at 3.5% NaCl concentration, and only C. utilis yeast could utilize zinc.

  • PDF

Control Efficacy of Fungicides on Chinese Cabbage Clubroot under Several Conditions (발병 조건에 따른 살균제들의 배추 뿌리혹병 방제효과)

  • Eom, Min-Yong;Jo, Su-Jung;Jang, Kyoung-Soo;Choi, Yong-Ho;Kim, Jin-Cheol;Choi, Gyung-Ja
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.155-160
    • /
    • 2011
  • To develop the efficient screening methods for antifungal compound active to Chinese cabbage clubroot caused by Plasmodiophora brassicae, the control efficacy of three fungicides fluazinam, ethaboxam, and cyazofamid on the disease was tested under several conditions such as soil types, cultivars of Chinese cabbage, growth stages of the host, and inoculum concentrations. The in vivo antifungal activities of the fungicides on clubroot of two Chinese cabbage cultivars were hardly different. At 7- and 14-day-old seedlings, the fungicides were more effective to control of clubroot than at 21-day-old seedlings. In a commercial horticulture media soil (CNS), disease severity of untreated controls was higher and control activity of the fungicides was less than in a mixture of CNS and upland soil (1:1, v/v). Disease development of the seedlings inoculated with P. brassicae at $1.8{\times}10^7$ spores/pot to $1.1{\times}10^9$ spores/pot was almost same, but control efficacy of the fungicides was negatively correlated with inoculum dosages. To effectively select in vivo antifungal compound on Chinese cabbage clubroot, 14-day-old seedlings need to be inoculated with P. brassicae by drenching the spore suspension to give $1{\times}10^8$ spores/pot 1 day after chemical treatment. To develop clubroot, the inoculated plants are incubated in a growth chamber at $20^{\circ}C$ for 2 days, and then cultivated in a greenhouse ($20{\pm}5^{\circ}$) for four weeks.

Bacterial Growth-inhibiting Activity of Amniotic Fluid Against E. coli (양수의 대장균에 대한 세균증식 억제효과)

  • Kim, Soo-Yong;Choi, Myung-Sik;Chang, Woo-Hyun;Cha, Chang-Yong
    • The Journal of the Korean Society for Microbiology
    • /
    • v.22 no.3
    • /
    • pp.233-240
    • /
    • 1987
  • The amniotic fluid provides a medium in which the fetus can readily move, cushions him against possible injury and helps him maintain an even temperature. Besides above mentioned functions, investigators reported that human amniotic fluid contains host-resistance factors which prevent bacteria from producing infectious disease and this activity shows difference among human racial groups or bacterial genera, species and strains. 40 amniotic fluid specimens from Korean women in their second and third trimesters of pregnancy were examined for inhibiting the growth of Escherichia coli. And various factors which might affect bacterial growth inhibiting activity such as pH, initial inoculum size, concentration of amniotic fluid, and heat resistance, were also tested using a strongly inhibitory amniotic fluid specimen. Finally plate diffusion tests were carried out using other strongly inhibitory amniotic fluid. The following results were obtained: 1. Of the 40 fluid samples examined, 18 specimens(45%) had inhibitory activity and samples from women in their second trimester of pregnanancy showed non-inhibitory activity(2 specimens). 2. The pH of the fluids varied between 7.43 and 8.33. There was no correlation between pH and inhibitory activity. 3. No. 19 amniotic fluid showed bacteriostatic activity after 24 hours incubation when an inoculum of $10^2$ organisms per milliliter was used, but non-inhibitory with an inoculum of $10^3$ and $10^4$ bacteria per milliliter. 4. The content of amniotic fluid in culture media influenced E. coli growth. At 90 percent, E. coli was inhibited growth but at 10 percent and 50 percent. 5. Inhibitory activity of No. 19 amniotic fluid was retained after heating to $50^{\circ}C$ for 30 minutes or 100^{\circ}C$ for 30 minutes. 6. Plate diffusion tests with No. 27 amniotic fluid showed that 0.7ml amniotic fluid gave clear zone of growth inhibition around the central well but 0.2ml and 0.1ml amniotic fluids were not.

  • PDF

Effect of Metals on Tobacco Mosaic Virus Infection (담배모자이크 바이러스 감염성에 대한 금속의 영향)

  • Choi, C.W
    • The Journal of Natural Sciences
    • /
    • v.10 no.1
    • /
    • pp.23-26
    • /
    • 1998
  • The efficacy of various concentration of divalent copper and zinc ions was evaluated separately for the infectivity of tobacco mosaic virus. Infectivity of TMV was more enhanced by addition of zinc, while it was decreased by addition of copper. The number of local lesions were more produced on tobacco leaves inoculated with inoculum sap containing zinc than those inoculated with sap only. The effect of copper inhibited the infectivity of TMV is dependent on copper concentration. TMV particles treated with various concentration of zinc and copper, respectively, analyzed by electrophoresis, and appeared to be altered in electrophoretic behavior. When TMV was exposed to zinc concentration at more than 200mM, the viral particles were completely degraded, and at 40-20 mM they were barely detectable, but at 2 mM they were quite stable. When TMV was exposed at less than concentration of 20 mM of copper were degraded.

  • PDF