• 제목/요약/키워드: inlet flow structure

검색결과 149건 처리시간 0.027초

Numerical Study of Inlet and Impeller Flow Structures in Centrifugal Pump at Design and Off-design Points

  • Cheah, Kean Wee;Lee, Thong-See;Winoto, S.H.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.25-32
    • /
    • 2011
  • The objective of present work is to use numerical simulation to investigate the complex three-dimensional and secondary flow structures developed at the inlet and impeller in a centrifugal pump at design and off-design points. The pump impeller is shrouded with 6 backward swept blades and with a specific speed of 0.8574. The characteristic of the pump is measured experimentally with straight and curved intake sections. Numerical computation is carried out to investigate the pump inlet flow structures and subsequently the flow field within the centrifugal pump. The numerical results showed that strong interaction between the impeller eye and intake section. Secondary flow structure occurs upstream at the pump inlet has great influence on the pump performance and flow structure within the impeller.

Numerical Study of Three-Dimensional Compressible Flow Structure Within an S-Duct for Aircraft Engine Inlet

  • Cho, Soo-Yong;Park, Byung-Kyu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제1권1호
    • /
    • pp.36-47
    • /
    • 2000
  • Three-dimensional compressible turbulent flow fields within the passage of a diffusing S-duct have been simulated by solving the Navier-Stokes equations with SIMPLE scheme. The average inlet Mach number is 0.6 and the Reynolds number based on the inlet diameter is $1.76{\times}10^6$ The extended $k-{\varepsilon}$ turbulence model is applied to modeling the Reynolds stresses. Computed results of the flow in a circular diffusing S-duct provide an understanding of the flow structure within a typical engine inlet system. These are compared with experimental wall static-pressure, total-pressure fields, and secondary velocity profiles. Additionally, boundary layer thickness, skin friction values, and streamlines in the symmetric plane are presented. The computed results depict the interaction between the low energy flow by the flow separation and the high energy flow by the reversed duct curvature. The computed results obtained using the extended $k-{\varepsilon}$ turbulence model.

  • PDF

베인없는 디퓨저에서의 스톨 임계 유동각에 관한 연구 (Stall Critical Flow Angle in a Vaneless Diffuser of a Centrifugal Compressor)

  • 강정식;강신형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.611-614
    • /
    • 2002
  • Rotating stall in vaneless diffusers of centrifugal compressor occurs in the diffuser wall due to flow separation at large inlet flow angle. For this reason, the critical inlet flow angles are suggested by several researchers. Beyond this critical angle, flow separates in the diffuser, and develops into rotating stall. This paper studied this critical flow angle. Rotating stall is measured through eight fast-response pressure transducers which are equally spaced around the circumference at the inlet and exit of a vaneless diffuser. Experiments are done from 20000rpm to 60000rpm for the diffuser stall. Two-cell structure which rotates at $6{\~}l0{\%}$ of impeller speed is fully developed at $20000{\~}40000rpm$, and three-cell structure which rotates at $7{\~}9{\%}$ of impeller speed is fully developed at $50000{\~}60000rpm$. This paper shows that the critical inlet flow angle is not constant but related with tip speed of impeller. As tip speed increases, so does the critical inlet flow angle.

  • PDF

입구 개방형 덕트를 적용한 초저낙차 횡류수차의 성능향상 (Performance Improvement of Very Low Head Cross Flow Turbine with Inlet Open Duct)

  • 천쩐무;패트릭 마크 싱;최영도
    • 한국유체기계학회 논문집
    • /
    • 제17권4호
    • /
    • pp.30-39
    • /
    • 2014
  • The cross flow turbine is economical because of its simple structure. For remote rural region, there are needs for a more simple structure and very low head cross flow turbines. However, in this kind of locations, the water from upstream always flows into the turbine with some other materials such as sand and pebble. These materials will be damage to the runner blade and shorten the turbine lifespan. Therefore, there is a need to develop a new type of cross flow turbine for the remote rural region where there is availability of abundant resources. The new design of the cross flow turbine has an inlet open duct, without guide vane and nozzle to simplify the structure. However, the turbine with inlet open duct and very low head shows relatively low efficiency. Therefore, the purpose of this study is to optimize the shape of the turbine inlet to improve the efficiency, and investigate the internal flow of a very low head cross flow turbine. There are two steps to optimize the turbine inlet shape. Firstly, by changing the turbine open angle along with changing the turbine inlet open duct bottom line (IODBL) location to investigate the internal flow. Secondly, keeping the turbine IODBL location at the maximum efficiency achieved at the first step, and changing the turbine IODBL angle to improve the performance. The result shows that there is a 7.4% of efficiency improvement by optimizing turbine IODBL location (open angle), and there is 0.3% of efficiency improvement by optimizing the turbine IODBL angle.

압력에 따른 평행박막 밸브의 자율 변형을 이용한 수동형 유량 제어기 (A Passive Flow-rate Regulator Using Pressure-dependent Autonomous Deflection of Parallel Membrane Valves)

  • 도일;조영호
    • 대한기계학회논문집A
    • /
    • 제33권6호
    • /
    • pp.573-576
    • /
    • 2009
  • We present a passive flow-rate regulator, capable to compensate inlet pressure variation and to maintain a constant flow-rate for precise liquid control. Deflection of the parallel membrane valves in the passive flowrate regulator adjusts fluidic resistance according to inlet fluid pressure without any external energy. Compared to previous passive flow-rate regulators, the present device achieves precision flow regulation functions at the lower threshold compensation pressure of 20kPa with the simpler structure. In the experimental study, the fabricated device achieves the constant flow-rate of $6.09{\pm}0.32{\mu}l/s$ over the inlet pressure range of $20{\sim}50$ kPa. The present flow-rate regulator having simple structure and lower compensation pressure level demonstrates potentials for use in integrated micropump systems.

침전지 유입부 설계를 위한 CFD 모형의 적용 (Application of a CFD Model for the Design of a Settling Basin Inlet Structure)

  • 김남일;김대근;유창환;김태영
    • 상하수도학회지
    • /
    • 제19권3호
    • /
    • pp.318-322
    • /
    • 2005
  • We applied a commercially available computational fluid dynamics model, FLOW-3D, to design a settling basin inlet structure for the intended O sewage plant. In addition, we analyzed the extent to which the inlet sewage water was distributed as a result, firstly, of the location and width of a submerged baffle wall and, secondly, of the opening ratio of a baffle wall with opening holes. The application results show that the flow is unstable due to the generation of eddies in both sides of the submerged baffle wall when the submerged baffle wall is located close to the inlet. The eddies and subsequent instability also occur when the submerged baffle wall is located close to the baffle wall with opening holes. Moreover, the discharge that passes through the midsection of the settling basin increases as the width of the submerged baffle wall increases. At the O sewage plant, when the submerged baffle wall with a width of 2.4 m was located 2 m from the inlet structure and the opening ratio of the baffle wall was 7 percent, the most satisfactory distribution of the inlet sewage water occurred at the entrance of the settling basin.

용접식 판형열교환기 헤더형상에 따른 채널 위치별 유량 분배 특성 고찰 (Investigation of Flow Distribution Characteristics at the Channel Location according to the Header Shape of Welded Plate Heat Exchanger)

  • 함정균;김의;안성국;조홍현
    • 한국지열·수열에너지학회논문집
    • /
    • 제15권3호
    • /
    • pp.7-13
    • /
    • 2019
  • To improve the flow distribution at channel locations in the welded plate heat exchanger with "L"-type inflow, the flow visualization of Model 1 was carried out. Besides, the characteristics of flow distribution was investigated experimentally according to the header shape. The inlet flow rate for each channel location was increased at the side channels but decreased at the central channels. In the case of Model 2, which has a slant structure added to the basic header of Model 1, the unevenness of inlet flow increased by 23% from 0.019 to 0.023 as compared to Model 1. On the other hand, Model 3, which has a baffle structure added to Model 2, showed 0.064 unevenness in inlet flow, which was a 36% reduction one compared to Model 1. To improve the distribution at each channel in the welded plate heat exchanger with "L"-type flow, it is necessary to improve the header external shape for the guide of flow as well as the baffle structure for reduction of vortex flow.

Flush 흡입관 설계를 위한 매개변수 연구 (A Parametric Study for the Design of Flush inlet)

  • 이진규;정석영;안창수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.132-138
    • /
    • 2004
  • Flush inlet, which has been chosen for modem air vehicles to take advantage of structure compactness and small RCS, gives rise to some aerodynamic problems such as flow separation and distortion due to vortices which deteriorate the performance of both inlet and engine. In this study, pressure recoveries at inlet exit plane were evaluated through numerical analyses of 3D turbulent flow for various inlet shapes and flight conditions. Inlet shape was controlled by changing ramp angle and width of throat, and effects of mass flow rate and angle of attack were investigated.

  • PDF

An Investigation of Swirling Flow in a Cylindrical Tube

  • Chang, Tae-Hyun;Kim, Hee-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제15권12호
    • /
    • pp.1892-1899
    • /
    • 2001
  • An experimental study was performed for measuring velocity and turbulence intensity in a circular tube for Re= 10,000, 15,000 and 20,000, with swirl and without swirling flow. The velocity fields were measured using PIV techniques and swirl motion was produced by a tangential inlet condition. Some preliminary measurements indicated that over the first 4 diameter, two regions of flow reversal were set up (the so called 2-cell structure). At the highest Reynolds numbers, the maximum values of the measured axial velocity components had moved toward the test tube wall and produce more flow reversal at the conter of the tube. As the Reynolds number increased, the turbulence intensity of swilling flow at the tube inlet also increased.

  • PDF

Shape Effect of Inlet Nozzle and Draft Tube on the Performance and Internal Flow of Cross-Flow Hydro Turbine

  • Choi, Young-Do;Son, Sung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권3호
    • /
    • pp.351-357
    • /
    • 2012
  • Small hydropower is a reliable energy technology to be considered for providing clean electricity generation. Producing electrical energy by small hydropower is the most efficient contribution to renewable energy. Cross-flow turbine is adopted primarily because of its simple structure and high possibility of applying to small hydropower. The purpose of this study is to investigate the effect of inlet nozzle shape on the performance and internal flow of a cross-flow turbine for small hydropower by CFD analysis. Moreover, the shape effect of draft tube has been investigated according to modified shapes of the length and the diffuse angle. The results show that relatively narrow and converging inlet nozzle shape gives better effect on the performance of the turbine.