• Title/Summary/Keyword: inlet flow

Search Result 2,497, Processing Time 0.027 seconds

Numerical Analysis of Flow Uniformity in Selective Catalytic Reduction (SCR) Process Using Computational Fluid Dynamics (CFD)

  • Shon, Byung-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.295-306
    • /
    • 2022
  • The NOx removal performance of the SCR process depends on various factors such as catalytic factors (catalyst composition, shape, space velocity, etc.), temperature and flow rate distribution of the exhaust gas. Among them, the uniformity of the flow flowing into the catalyst bed plays the most important role. In this study, the flow characteristics in the SCR reactor in the design stage were simulated using a three-dimensional numerical analysis technique to confirm the uniformity of the airflow. Due to the limitation of the installation space, the shape of the inlet duct was compared with the two types of inlet duct shape because there were many curved sections of the inlet duct and the duct size margin was not large. The effect of inlet duct shape, guide vane or mixer installation, and venturi shape change on SCR reactor internal flow, airflow uniformity, and space utilization rate of ammonia concentration were studied. It was found that the uniformity of the airflow reaching the catalyst layer was greatly improved when an inlet duct with a shape that could suppress drift was applied and guide vanes were installed in the curved part of the inlet duct to properly distribute the process gas. In addition, the space utilization rate was greatly improved when the duct at the rear of the nozzle was applied as a venturi type rather than a mixer for uniform distribution of ammonia gas.

A study on the characteristics of gas flow in inlet port of 2 cycle engine (2사이클 기관 흡기 포오트의 가스 유동 특성에 관한 연구)

  • 이창식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.725-730
    • /
    • 1987
  • An experimental study of the air flow through inlet pipe of reciprocating two-cycle engine was investigated under motored condition. Measurements of the two components of velocity, velocity fluctuation, and the other behavior of inlet flow have been obtained by laser Doppler anemometer system. The research engine comprised the cylinder head of a two-cycle engine which mounted on optical spacer with measuring window and glass inlet entry for laser anemometer measurement. A dual beam laser Doppler anemometer was used with conventional forward scattered method and comprised argon-ion laser, frequency shifter with Bragg cell module, and the signal processor. Measurements of mean velocity fluctuation of inlet flow for different engine speeds, measuring positions, and the changes in cylinder volume are investigated. The results presented show that the changes in engine speed is shown to be strongly influenced on the mean velocity of inlet air. The effect of measuring position and cylinder volume on the inlet velocity was also investigated for the inlet port entry and is shown to be small compared to the engine speed.

An analysis of the performance of sector shaped, pivoted pad thrust bearings in consideraation of the inlet pressure (패드의 선단압력을 고려한 부채꼴 모양의 피봇식 추력베어링의 성능해석)

  • 김종수;김경웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1063-1070
    • /
    • 1988
  • The influence of the inlet pressure on bearing performance of tilting pad bearings in laminar regime is examined. A simple flow model is presented to calculate the inlet pressure in inlet flow that occurs at a short distance ahead of the bearing inlet. The bearing performances are obtained, load capacity, friction torque and lubricated flow-rate, etc, numerically for the inlet pressure boundary conditions with and without pressure jump. The computed results of both cases show that bearing performance and the optimum pivot position changes remarkably according to the bearing operating conditions. The influence of the inlet pressure on bearing performance must be considered to analyze the bearing performance precisely.

Numerical Simulation of Flows Inside Scroll Casing with Rotating Impeller (회전하는 임펠러를 포함한 스크롤 케이싱 내부 유동장의 전산 해석)

  • Kim J W.;Ahn E. Y.;Park J. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.65-68
    • /
    • 2004
  • The design procedure for centrifugal blower with high inlet resistance is not presented yet. Overall fluid dynamic performance is estimated for comparison between the case of atmospheric inlet condition and the present model. Detail information between blades is prepared by using a commercial program, SCRYU-Tetra. A centrifugal blower with large inlet pressure is adopted in an air purifier having filtering devices. As the inlet residence increases the flow rate of the system is decreased. In parallel, outlet area of the system affects the performance of the system in the sense of flow balance. Consequently, the flow balance between the inlet and outlet becomes an important parameter for the design of the scroll casing for the centrifugal blower with high inlet pressure.

  • PDF

Study on Concept Design of Supersonic Inlet and Flow Control of Bleeding under Operating Condition (초음속 흡입구 개념 설계와 운영조건 내의 블리딩(bleeding) 유동제어 연구)

  • Choi, Jaehwan;Cheon, Somin;Choe, Yohan;Hong, Wooram;Kim, Chongam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1025-1031
    • /
    • 2012
  • The present paper deals with concept design of supersonic inlet based on compressible flow theory and flow control of bleeding in order to guarantee stability of supersonic inlet of ramjet engine in broad range of operating conditions. Shock instability, shock wave-boundary layer interaction and flow separation should be properly controlled to improve performance of the supersonic inlet. Considering shock strength, boundary layer and flow separation, the supersonic inlet is modified from the basic model which is designed under inviscid theory. Consequently, shock is stabilized, and required mass flow rate is obtained. Furthermore, bleeding is applied to the supersonic inlet to maintain performance in off-design conditions. Mass flow condition is adopted for modeling of bleeding effect, and performance of the supersonic inlet is evaluated by changing bleeding locations and numbers.

The Study on Flow Characteristics of Impinging Jet Using PIV (PIV를 이용한 충돌제트의 유동특성에 관한 연구)

  • Kim, D.K.;Kim, J.H.;Kim, S.P.;Lee, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.717-722
    • /
    • 2001
  • A present study is the flow characteristics of impinging jet by PIV measurement and numerical analysis. The flow characteristics of impinging jet flow are affected greatly by nozzle inlet velocity. An circular sharp edged nozzle type$(45^{\circ})$ was used to achieve uniform mean velocity at the nozzle inlet, and its diameter is 10mm(d). Therefore, the flow characteristics on the impinging jet can be changed largely by the control of main flow. In this parent study, we investigate the effects of inlet velocity, its variable is nozzle inlet Reynolds numbers(Re=1500, 3000, 4500, 6000 and 7500).

  • PDF

Exhaust Flow Characteristics of Catalytic Converter Adapted to Exhaust Manifold (배기매니폴드 직접부착 촉매장치의 배기 유동특성)

  • Park, Young-Cheol;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.837-844
    • /
    • 2003
  • The exhaust gas flow in the inlet collector of close coupled catalyst(CCC) adapted to the exhaust manifold is very complex flow because the exhaust gas is a pulsation flow with several port flow. The distribution of gas flow and temperature in inlet collector effect to the efficiency of catalytic converter. In this study, it measures temperatures on several point in inlet collector with two kind of inlet collector volume. And it analyzes with CFD to exhaust manifold and close coupled catalyst for temperature and flow. Comparing to measured and analyzed result, it find increasing of collector volume effects to catalyst temperature distribution and uniformity of catalytic converter

Quantitative Visualization of Outlet Flow of the Centrifugal Blower (원심 블로어 출구 유동의 정량적 가시화 연구)

  • Tu, Xin Cheng;Kim, Sung-Jun;Park, Seung Ha;Kim, Hyoung-Bum
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.1
    • /
    • pp.25-29
    • /
    • 2014
  • The outlet flow of the centrifugal blower were quantitatively visualized using particle image velocimetry. Because the centrifugal blower is one of the key parts of electric vehicle battery cooling system, the quantitative information of centrifugal blower is necessary to design and optimize the cooling system. The effect of different inlet flow condition to the outlet flow was investigated in this study. Two different inlet ducts were used. One is the straight inlet and the other is a bended one. The results clearly showed the outlet flow asymmetry in both inlet ducts. When the blower has the bended inlet, the flow rate decreases due to the increase of the head loss.

Flow Characteristic with Distance of Inlet Port and Rotating Length of Fluid in the Double Heat Exchanger (이중관 열교환기의 유체 유입위치와 회전길이에 따른 유동특성)

  • Lee, Seung-Ha;Cha, Dong-An;Kwon, Oh-Kyung
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.51-57
    • /
    • 2013
  • The length and position of the inlet port on the double tube heat exchanger is analyzed by CFX ver.11 for studying the characteristic of its flow distribution. When the boundary conditions of the inlet temperature and mass flow rate were each $20^{\circ}C$ and 10 ~ 50 kg/min, 3 models that are based on the distance between the inlet port and the center of the heat exchanger(0, 5.025, 10.05 mm) were analyzed to find the uniformity of the flow rate. Based on the flow rate, 4 lengths (23.723, 33.890, 44.057, 57.274 mm) were used to study the flow distribution according to Reynolds Number. The results show that, when the distance from the inlet to the position of the center of the heat exchanger is 10.05 mm and the length is 57.274 mm, the flow distribution is the most unified.

Analysis of the flow distribution and mixing characteristics in the reactor pressure vessel

  • Tong, L.L.;Hou, L.Q.;Cao, X.W.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.93-102
    • /
    • 2021
  • The analysis of the fluid flow characteristics in reactor pressure vessel is an important part of the hydraulic design of nuclear power plant, which is related to the structure design of reactor internals, the flow distribution at core inlet and the safety of nuclear power plant. The flow distribution and mixing characteristics in the pressurized reactor vessel for the 1000MWe advanced pressurized water reactor is analyzed by using Computational Fluid Dynamics (CFD) method in this study. The geometry model of the full-scaled reactor vessel is built, which includes the cold and hot legs, downcomer, lower plenum, core, upper plenum, top plenum, and is verified with some parameters in DCD. Under normal condition, it is found that the flow skirt, core plate holes and outlet pipe cause pressure loss. The maximum and minimum flow coefficient is 1.028 and 0.961 respectively, and the standard deviation is 0.019. Compared with other reactor type, it shows relatively uniform of the flow distribution at the core inlet. The coolant mixing coefficient is investigated with adding additional variables, showing that mass transfer of coolant occurs near the interface. The coolant mainly distributes in the 90° area of the corresponding core inlet, and mixes at the interface with the coolant from the adjacent cold leg. 0.1% of corresponding coolant is still distributed at the inlet of the outer-ring components, indicating wide range of mixing coefficient distribution.