• Title/Summary/Keyword: injector

Search Result 1,229, Processing Time 0.029 seconds

On Rate of Multi-Hole Injector for Diesel Engine (디이젤 기관용 다공연료 분사 밸브의 분사율 측정)

  • Jeong, Dal-Sun;An, Su-Gil;Gwon, Gi-Rin
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.1
    • /
    • pp.41-48
    • /
    • 1986
  • Ifis recommended that the injection rate should be accurate and reliable in the input data of the performance simulation in diesel engine. Matsuoka Sin improved W. Bosch's injection ratio measurement system. Matsuoka Sin reduced length of the test pipe and set the orifice. However, it was not measured accurately to measure the injection ratio due to reflection wave. In the present thesis, the improved measurement system with combination of the conventional W. Bosch type injection ratio measurement system and Matsuoka Sin type corrected W. Bosch type was practically made. The location of orifice and throttle valve was modified and set one more back pressure valve in order to reduce the effect of reflection wave. The results according to injection condition of multi-hole nozzle are following: 1. Measurement error of injection ratio measurement system in this thesis was $\pm$ 1 %, therefore, its reliability was good. 2. The form of injetion ratio is changed from trapezoidal shape to triangle shape with increase of revolution per minute when injection amount is constant. 3. In the case of constant rpm, the initial injection ratio is almost constant regardless of the amount, meanwhile the injection period becomes longer with increase of the amount. 4. The injection pressure of nozzle isn't largely influenced with injection ratio in the case of constant injection amount and rpm, otherwise the initial injection amount is increased by 3-4% when the injection pressure is low. 5. The injection ratio isn't nearly influenced with back pressure.

  • PDF

Effect of Swirl Angle on the Atomization Characteristics in Two-Fluid Nozzle with Dual Air Supplying System (이중공기공급 이유체노즐의 선회각 변화에 따른 분무특성)

  • Kim, E.S.;Kang, S.M.;Choi, Y.J.;Kim, D.J.;Lee, J.K.;Rho, B.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.54-60
    • /
    • 2008
  • The atomization characteristics of the dual air supplying twin-fluid nozzle were investigated experimentally using PIV and PDA systems. The two-fluid nozzle is composed of three main parts: the feeding injector to supply fluid that is controlled by a PWM (pulse-width modulation) mode, the adaptor as a device with the ports for supplying the carrier and assist air and the main nozzle to produce the spray. The main nozzle has the swirl tip with four equally spaced tangential slots, which give the injecting fluid an angular momentum. The angle of the swirl tip varied with 0$^{\circ}$ 30$^{\circ}$, 60$^{\circ}$ and 90$^{\circ}$, and the ratios of carrier air to assist air and ALR(total air to liquid) were 0.55 and 1.23, respectively. The macroscopic behavior of the spray was investigated using PIV system, and the mean velocity, turbulent intensity and SMD distributions of the sprays were measured using PDA system. As the results, the mean axial velocity at the spray centerline decrease with the increase of the swirl angle. The turbulent intensities of the axial and radial velocity were increased with the increase of the swirl angle. The mean SMD (Sauter mean diameter) of the radial direction along the axial distance shows the lowest value at the swirl angle of 60$^{\circ}$.

  • PDF

A Study on the Influences of Recirculated Exhaust Gas upon Wear of Cylinder and Piston in Diesel Engines with EGR System (EGR시스템 디젤기관의 실린더 및 피스톤 마모에 미치는 재순환 배기의 영향에 관한 연구)

  • 하정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.827-835
    • /
    • 1998
  • The effects of recirculated exhaust gas on the wear of cylinder liner piston and piston rings have been investigated by the experiment with a two-cylinder four cycle indirect injection diesel engine operating at 75% load and 1600 rpm speed For the purpose of comparison between the rates of two cylinders with and without EGR the recirculated exhaust gas is sucked into one of two cylinders after the soot among exhaust emissions is removed by an intntionally designed cylinder-type scrubber equipped with 6 water injectors(A water injector has 144 nozzles of 1.0 mm diame-ter) while only the fresh air into another cylinder. These experiments are carried out on the fuel injection at a fixed $15.3^{\circ}$ BTDC timing. It is found that firstly the mean wear amount of cylinder liner with EGR is more increased in the measurement positions of the second half than of the first half and the mean wear amount without EGR is almost uniform regardless of measurement posi-tions secondly the wear rates of the first and second piston ring(compression ring)thickness with EGR are more than twice but the wear rate of oil ring thickness without EGR is more increased than that with EGR and finally the wear rate of piston skirt with EGR is a little bit increased but the piston hed diameter is rather increased owing to soot adhesion and corrosion wear and espe-cially larger with EGR.

  • PDF

Compression of The Trigeminal Ganglion Enhances Nociceptive Behavior Produced by Formalin in The Orofacial Area of Rats

  • Yang, Gwi-Y.;Park, Young-H.;Lee, Min-K.;Kim, Sung-K.;Ahn, Dong K.
    • International Journal of Oral Biology
    • /
    • v.33 no.4
    • /
    • pp.155-162
    • /
    • 2008
  • The present study investigated inflammatory hypersensitivity following compression of the trigeminal ganglion in rats. Experiments were carried out on male Sprague-Dawley rats weighing 250-260 g. Under anesthesia, rats were mounted on a stereotaxic frame and injected with $8{\mu}L$ of 4% agar solution through a stainless steel injector to compress the trigeminal ganglion. In the control group, rats underwent a sham operation without agar injection. Injection sites were examined with a light micrograph after compression of the trigeminal ganglion. Air-puff thresholds (mechanical allodynia) were evaluated 3 days before surgery and 3, 7, 10, 14, 17, 21, 24, 30, and 40 days after surgery. Air-puff thresholds significantly decreased after compression of the trigeminal ganglion. Mechanical allodynia was established within 3 days and remained strong over 24 days, returning to preoperative levels approximately 40 days following compression. After subcutaneous injection of 5% formalin ($50{\mu}L$) in the compression of the trigeminal ganglion-treated rats, nociceptive scratching behavior was recorded for 9 successive 5-min internals. Injection of formalin into the vibrissa pad significantly increased the number of scratches and duration of noxious behavioral responses in sham-treated rats. Noxious behavioral responses induced by subcutaneous formalin administration were significantly potentiated in rats with trigeminal ganglion compression. These findings suggest that compression of the trigeminal ganglion enhanced formalin-induced infla-mmatory pain in the orofacial area.

Experimental and Numerical Analysis of DME Spray Characteristics in Common-rail Fuel System (커먼레일 연료시스템에서의 DME 분무 특성에 대한 실험과 해석적 연구)

  • Jeong, Soo-Jin;Park, Jung-Kwon;Lee, Sang-In;Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1151-1159
    • /
    • 2012
  • Spray visualization and computer simulation of a DME injector have been conducted to investigate the enlarged injection hole diameter effect. To increase the reliability of the computational result, simulation results have been compared with the visualization test results, and the behaviors of a DME spray under various high-pressure and -temperature conditions have been computed. This study shows a discrepancy of 3.57% between the experimental and the computational results of penetration length for an injection pressure of 35 MPa and ambient pressure of 5 MPa. When simulating the engine conditions, the maximum penetration length of a fully developed DME spray is 42 mm when the temperature to pressure ratio is 300 K/MPa. The DME spray behavior is dominantly affected by the ambient pressure under the condition that the ratio is less than 300 K/MPa, and by the ambient temperature under the condition that the ratio is more than 300 K/MPa.

Spray Characteristics of the Injector for the APU Gas Tubine Engine at Airplane Operating Conditions (항공기 작동조건에 따른 APU 가스터빈엔진 연료노즐의 분무특성)

  • Choi, Chea-Hong;Choi, Seong-Man;Lim, Byeong-Jun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.29-36
    • /
    • 2008
  • Spray characteristics for APU gas turbine engine are investigated. In the test, four flight conditions such as sea level idle, sea level max power, 20,000 feet idle, 20,000 feet max power are used as spray experimental conditions. Spray visualization was performed by using ND-YAG laser bean PDPA(Phase Doppler Particle Analyzer) was used for measuring the particle diameter and velocity from 20 mm to 100 mm from discharge orifice. From the test result, SMD is $90{\sim}95\;{\mu}m$ 맛 20,000 ft idle condition and SMD is $60{\sim}75\;{\mu}m$ at sea level idle condition. Also SMD is $55{\sim}65\;{\mu}m$ at 20,000 ft max power condition and SMD is $30{\sim}70\;{\mu}m$ at sea level max power condition. In the case of 20,000 ft idle condition, combustion instability could be occurred due to the higher drop diameter. Therefore it is necessary to decrease the droplet diameter in the high altitude condition.

Characteristics of the In-cylinder Flow and Fuel Behavior with Respect to Engine Temperature Condition in the MPI Dual Injection Engine (MPI Dual Injection 엔진의 온도 조건 변화에 따른 엔진 내부 유동 및 연료 거동 특성에 관한 연구)

  • Lee, Seung Yeob;Chung, Jin Taek;Park, Young Joon;Yu, Chul Ho;Kim, Woo Tae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.210-219
    • /
    • 2014
  • The MPI dual injection engine can enhance the fuel efficiency and engine power. By using one injector per one intake port, MPI dual injection engine has an excellent fuel atomization and targeting injection. As the basic research for the MPI Dual injection engine design, this research was investigated in order to understand the characteristic of the in-cylinder flow and fuel behavior according to engine temperature condition and the fuel type in the MPI dual injection engines. The 3D unsteady CFD simulation for the MPI Dual injection engine was performed using STAR-CD. The engine operating condition was 2,000 rpm/WOT. The parameters for this study were fuel types, fuel temperatures and wall temperatures. As a result, the intake air amount, evaporated fuel in the cylinder and the fuel film on the wall were presented according to parameters that depend on the fuel properties and engine wall temperature. Also, the results were influenced by in-cylinder flow such as the intake flow, back flow and so on.

Spray Characteristics on Impingement Angle Variation and Mixture ratio of Impinging Injectors (충돌각과 혼합비 변화에 따른 충돌형 분사기의 분무특성에 관한 연구)

  • Gang, Sin Jae;Song, Beom Geun;Song, Gi Jeong;Lee, Jeong Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.72-79
    • /
    • 2003
  • Spray characteristics were investigated by impinging F-O-O-F type injector with varying the impingement angle through 15, 20 and 30 degree and the mixture ratio(O/F ratio) from 1.5 to 3.0. Experimental results show that the correlation between dispersion and impingement angle is not influenced of the mixture ratio variation, but which has influence on number density, and there is a linear correlation between dispersion and impingement angle. Velocity distribution, standard deviation and SMD of droplets are decreased as the impingement angle increases. Also, it was confirmed that the distribution of droplet size are in accordance with Rosin-Rammler and Upper-limit distribution.

Quantitative Approaches for the Determination of Volatile Organic Compounds (VOC) and Its Performance Assessment in Terms of Solvent Types and the Related Matrix Effects

  • Ullah, Md. Ahsan;Kim, Ki-Hyun;Szulejko, Jan E.;Choi, Dal Woong
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • For the quantitative analysis of volatile organic compounds (VOC), the use of a proper solvent is crucial to reduce the chance of biased results or effect of interference either in direct analysis by a gas chromatograph (GC) or with thermal desorption analysis due to matrix effects, e.g., the existence of a broad solvent peak tailing that overlaps early eluters. In this work, the relative performance of different solvents has been evaluated using standards containing 19 VOCs in three different solvents (methanol, pentane, and hexane). Comparison of the response factor of the detected VOCs confirms their means for methanol and hexane higher than that of pentane by 84% and 27%, respectively. In light of the solvent vapor pressure at the initial GC column temperature ($35^{\circ}C$), the enhanced sensitivity in methanol suggests the potential role of solvent vapor expansion in the hot injector (split ON) which leads to solvent trapping on the column. In contrast, if the recurrent relationships between homologues were evaluated using an effective carbon number (ECN) additivity approach, the comparability assessed in terms of percent difference improved on the order of methanol (26.5%), hexane (6.73%), and pentane (5.24%). As such, the relative performance of GC can be affected considerably in the direct injection-based analysis of VOC due to the selection of solvent.

Syringe Reuse Issues in Automated Contrast Injection System in Dynamic Magnetic Resonance Imaging (조영제 자동주입기를 활용한 자기공명영상 동적검사 시 실린지 재사용의 문제)

  • Son, Soon-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.11
    • /
    • pp.445-450
    • /
    • 2019
  • This study proves that syringe reuse of automated injection system entails a risk of contrast media reflux and saline solution contamination which are pumped by a piston into the patients' venous cannula in the dynamic MR images, we will be aware of the serious problem. To quantify the contrast media contamination effect on the saline solution, identical volume of the saline solution was collected before and after the contrast injection to the patients' venous cannula following T1 weighted image scanning to verify whether signal intensities differences are observed. The signal intensity of saline solution after the contrast injection was significantly higher than that of saline before injection by 523.43%. This result is due to the backflow that contaminates the saline solution on the opposite side when the contrast agent is injected. In conclusion, the syringe used to inject contrast medium. causes cross-contamination due to contrast reflux. Therefore, even if the same patient's examination is used for quantitative analysis, the error should be avoided by changing the acquisition sequence or replacing the syringe.