• Title/Summary/Keyword: injector

Search Result 1,233, Processing Time 0.022 seconds

A Study on Applicability to Dual-Fuel Engine of Low Caloric Gas (저발열량 가스의 혼소엔진 적용에 관한 연구)

  • Park, Cheol-Woong;Lee, Sun-Youp;Kim, Chang-Gi;Won, Sang-Yeon;Lee, Jang-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.1
    • /
    • pp.15-20
    • /
    • 2010
  • The interest on the utilization of landfill gases and biogases for energy production has been increasing due to environment concerns and global warming caused by burning fossil fuels, renewable nature of these gases. Using those synthesis gases to generate energy with engine encourages more efficient collection reducing emissions into the atmosphere and generates revenues for the operators. However the lower calorific value of synthesis gases than that of LPG or CNG affects the combustion stability and power output. Thus it becomes necessary to address disadvantages involved by studying synthesis gases in technological perspective. This paper discussed synthesis gas as a fuel for 60kW dual-fuel engine to produce power in an effective way. The methane diluted with $N_2$ was used as a fuel and developed ECU and injector driver facilitated the investigations with diesel fuel.

Study on Antimicrobial Activity and Analysis of Essential Oil Components of Cinnamomum cassia and Prunellae Herba (육계 및 하고초의 향기성분 분석과 항균 활성 연구)

  • Lee, Jong-Rok;Park, Sook-Jahr;Jung, Dae-Hwa;Park, Moon-Ki
    • Journal of Environmental Science International
    • /
    • v.23 no.2
    • /
    • pp.157-164
    • /
    • 2014
  • The essential oil obtained by steam distillation from medicinal plants of Cinnamomum cassia and Prunellae Herba. Analysis of essential oils were performed on GC/MS selective detector. Separations were performed fused silica capillary column. The carrier gas was ultra pure helium with a flow of 1 $m{\ell}/min$ and the splitless injector temperature was set as $280^{\circ}C$. The column temperature program was as follows: initial temperature of $70^{\circ}C$ for 4 min, and increased by $2^{\circ}C/min$ 70 to $100^{\circ}C$ (held 2 min), After that the temperature was varied from 100 to $200^{\circ}C$ at $5^{\circ}C/min$ (held 20 min), increase to $280^{\circ}C$ (held 5 min) at $10^{\circ}C/min$, in a total run time of 73 min. Ten volatile flavor components were identified from C. cassia and ten volatile flavor components were identified from Prunellae Herba. Strong inhibition of growth of Vibrio parahaemolyticus was obtained with all doses of C. cassia tested. Moreover, antimicrobial activity of C. cassia occurred in a dose dependant manner.

An experimental study on the characteristics of spray pattern by the Airblast Atomizer (공기충돌형 연료분사장치의 분무특성에 관한 실험적 연구)

  • Kim, Hyun-Joong;Han, Jae-Seob;Kim, Yoo;Min, Seong-Ki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.24-29
    • /
    • 1998
  • An experimental study was carried out to investigate the characteristics of spray pattern such as discharge coefficient, spray angle, and mass distribution for two-fluid airblast swirl injector, within the range of fluid supply pressure 0~13kg/$\textrm{cm}^2$. In general atomization is promoted with increasing total gas mass flow and performance of the splay pattern was more stable when radial mass flow was greater than axial mass flow, radial swirler was better than Axial swirler for atomization. Equivalent spray angle did not change with water mass flow except for the condition of 3kg/$\textrm{cm}^2$ and showed the same for the gas mass flow. Mass distribution from the patternator shows that maximum value of the distribution were lowered but distributed larger area when gas flow rate increased. Center of mass position did not change with increasing water mass flow.

  • PDF

A Study on the Response Characteristics of a High Speed Solenoid (고속 솔레노이드의 응답특성에 관한 연구)

  • Cho, Kyu-Hak
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.12 no.2
    • /
    • pp.142-151
    • /
    • 2000
  • The studies on the electronic control fuel injection system for a DI diesel engine have done for reducing the exhaust emission and improving fuel consumption. The electronic control fuel injection system is classified into a common rail system, a unit injector system and a high pressure injection system. The characteristics of these systems are largely depends on the operating characteristics of its solenoid that have high speed on-off operation. In order to improve these characteristics of fuel injection system, it is necessary to design the optimal shape of solenoid and select the input method of its power source. It was proposed HELENOID, COLENOID, DISOLE, and Multipole Solenoid in the studies of design for the optimal shape of solenoid. The studies on the energizing method, input method for power of solenoid were dealt with the conventional energizing method, the chopping method and the pre-energizing method. In order to find out the high response characteristics of solenoid, it is necessary to test the performance of optimally designed solenoid with a new energizing method. In this paper, the solenoid of multi-pole type with plat armature and its power control unit to control input current by the chopping method designed, and its response tests were performed according to its energizing conditions. As a result, the maximum input current for solenoid was controlled by the period of first stage exciting current and chopping duty ratio of control stage exciting current, and the fastest "on" time was able to get 0.46ms. The conditions of fastest "on" time was 0.3ms for first stage exciting current, 0.16ms for control exciting current and 75% for chopping duty ratio.

  • PDF

A Study on Evaporative Characteristics of Multi-component Mixed Fuels Using Mie Scattered Light and Shadowgraph Images (Mie 산란광법 및 Shadowgraph법을 이용한 다성분 혼합연료의 증발특성연구)

  • Yoon, Jun-Kyu;Myong, Kwang-Jae;Jiro Senda;Fujimoto Hajime;Cha, Kyung-Ok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.682-691
    • /
    • 2006
  • This study was conducted to assess the effect of mixed fuel composition and mass fraction on spray inner structure in evaporating transient spray under the various ambient conditions. Spray structure and spatial distribution of liquid phase concentration are investigated using a thin laser sheet illumination technique on the multi-component mixed fuels. A pulsed Ar+ laser was used as a light source. The experiments were conducted in a constant volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector. Used fuel contain $i-octane(C_8H_{18}),\;n-dodecane(C_{12}H_{26})$ and $n-hexadecane(C_{16}H_{34})$ that are selected as low-, middle- and high-boiling point fuel, respectively. Experimental conditions are 25Mpa, 42MPa, 72MPa and 112MPa in injection pressure, $5kg/m^3,\;15kg/m^3\;and\;20kg/m^3$ in ambient gas density, 400K, 500K, 600K and 700K in ambient gas temperature, 300K and 368K in fuel temperature, and different fuel mass fraction. Experimental results indicate that the more high-boiling point component, the longer the liquid phase it were closely related to fuel physical properties, but injection pressure had no effect on. And there was a high correlation between the liquid phase length and boiling temperature at 75% distillation point.

Combustion Experiments of a High Pressure Liquid Propellant Thrust Chamber (고압 실물형 연소기의 저압 및 설계점 연소시험)

  • Seo Seonghyeon;Han Yeoung-Min;Moon Il-Yoon;Lee Kwang-Jin;Song Joo-Young;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.269-273
    • /
    • 2005
  • A practical, 30-tonf-class fullscale thrust chamber has been combustion tested using real propellants for the first time in the domestic technology scene. The very first combustion test was conducted at a low mass flow rate condition for the preliminary assessment of any problems associated with its function and performance while reducing risks from a high chamber pressure never achieved before. A test for the design condition achieved through a low-pressure stage shows stable characteristics of all the static pressures and thrust. Dynamic pressures measured in the manifolds and the chamber did not reveal any distinct wave coupled to a specific frequency and their intensities reside in the allowable range. Moreover, it is encouraging to find no physical failures with a thrust chamber hardware.

  • PDF

Effect of Combustion Chamber Design on Combustion Stability Characteristics of a Full-scale Gas Generator (연소실 설계에 따른 실물형 가스발생기의 연소 안정성 특성)

  • Lee, Kwang-Jin;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok;Ahn, Kyu-Bok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.1
    • /
    • pp.11-17
    • /
    • 2007
  • Effects of combustion chamber design on combustion stability characteristics of a full-scale gas generator were studied experimentally. Thirty seven double-swirl injectors with recess number of 1.5 were distributed in the injector head, which significantly influences combustion performance. The characteristics of combustion stability were inspected by the parametric variations such as changing length and diameter of the combustion chamber and installing a turbulence ring. The experimental result shows that as the effective length of the combustion chamber decreased, an instability frequency took place in a high-frequency region, and the amplitude of the dynamic pressure generally diminished and could be reduced to the unharmful level. However, the dynamic pressure fluctuation in the region of longitudinal resonant frequency could not be suppressed perfectly.

A Study on the Effect of Recirculated Exhaust Gas with Scrubber EGR System upon Exhaust Emissions in Diesel Engines (디젤기관의 배기 배출물에 미치는 스크러버형 EGR 시스템 재순환 배기의 영향에 관한 연구)

  • Bae, Myung-Whan;Ha, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1247-1254
    • /
    • 2000
  • The effects of recirculated exhaust gas on the characteristics of $NO_x$ and soot emissions under a wide range of engine load have been experimentally investigated by a water-cooled, four-cylinder, indirect injection, four cycle and marine diesel engine operating at two kinds of engine speeds. The simultaneous control of $NO_x$ and soot emissions in diesel engines is targeted in this study. The EGR system is used to reduce $NO_x$ emissions, and a novel diesel soot removal device with a cylinder-type scrubber for the experiment system which has 6 water injectors(A water injector has 144 nozzles in 1.0 mm diameter) is specially designed and manufactured to reduce the soot contents in the recirculated exhaust gas to intake system of the engines. The intake oxygen concentration and the mean equivalence ratio calculated by the intake air flow and fuel consumption rate, and the exhaust oxygen concentration measured are used to analyse and discuss the influences of EGR rate on $NO_x$ and soot emissions. The experiments are performed at the fixed fuel injection timing of $15.3^{\circ}$ BTDC regardless of experimental conditions. It is found that $NO_x$ emissions are decreased and soot emissions are increased owing to the drop of intake oxygen concentration and exhaust oxygen concentration, and the rise of equivalence ratio as the EGR rate rises.

A Study on Ignition Characteristic with Supply Leading Time of Propellants in Liquid Rocket Engine (액체 로켓 엔진에 있어서 추진제 공급 선점 시간에 따른 점화 특성에 관한 연구)

  • Park, Jeong;Kim, Yong-Wook;Kim, Young-Han;Lee, Jae-Yong;Chung, Yong-Gahp;Cho, Nam-Kyung;Oh, Seung-Hyub
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1457-1463
    • /
    • 2000
  • Experimental studies on determination of the supply leading time of propellants to combustion chamber have been made to stably and efficiently guarantee the ignitions process with liquid rocket engine. The propellant used is a Kerosene as fuel and a liquid oxygen as oxidizer. FOOF type of three injectors are set with an angle of 135。 and the combustion chamber pressure is 200psi. The present experiment program also includes the stability on the quadlet type of ignitor using the triehylaluminum (TEAL) as an ignition source. Experimental results clarifies that the propellant supply through LOx leading to combustion chamber is proper for stable ignition and combustion processes based on the fuel and oxidizer manifold pressures, combustion chamber pressure, and the variation of flame length from the nozzle exit with lapse time, and shows that the leading supply time pf propellants effects the engine performance little.

Fuel Concentration Measurements by Laser Rayleigh Scattering (레이저 Rayleigh 산란을 이용한 연료농도의 계측)

  • Kwon, Soon-Tae;Kim, Hyeong-Sig;Lee, Jae-Won;Park, Chan-Jun;Ohm, In-Young
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2008.04a
    • /
    • pp.199-205
    • /
    • 2008
  • In this study, a system to measure continuously the fuel concentration in a steady flow rig on the basis of Rayleigh scattering is presented. The system can be employed to measure both the temporal and the spatial distribution. Also, it is possible to calibrate the system for the measurement of accurate absolute concentration. Firstly, the system was tested at a calibration chamber for the determination of scattering cross section from propane, butane, acetylene, Freon-12 and Genetron 143a. After this, the system was adapted to a steady flow rig to measure the temporal and spatial fuel concentration. The rig is composed of cylinder head, intake manifold, injector, and transparent cylinder which can simulate internal combustion engine. To cope with the problem of Mie scattering interference, a software filter was developed, which is based on the rise time and the time constant of the photomultiplier-amplifier system. The results show that LRS can provide useful informations about concentration field and the software filter is very effective method to remove Mie interference.

  • PDF