• Title/Summary/Keyword: injection temperature

Search Result 1,934, Processing Time 0.029 seconds

Efficiency Improvement Research in Proton Exchange Membrane Fuel Cell (고분자전해질형 연료전지의 효율향상에 대한 연구)

  • Jang, Haer-Yong;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.4
    • /
    • pp.149-154
    • /
    • 2005
  • Fuel cell performance evaluation logic was developed using G-language (LabVIEW) to measure performance stability. Degree of stability and reliability of performance data were improved with averaged value and standard deviation method. Water injection system was introduced and the performance using this method was comparable to that of conventional humidification method. Water injection system has advantage of lowering operation energy consumption, reducing the number of parts needed in humidification, therefore increasing efficiency of fuel cell system. Fuel cell performance was decreased in case of low temperature operation such as sub freezing condition. Air purge method was tested to reduce the water content in cell fixture before sub freezing condition. The performance degradation due to low temperature operation was minimized by air purge method in medium size cell fixture ($25cm^2$) case.

Icing Characteristics in Liquid-Phase Injection of LPG Fuel (액상분사식 LPG 인젝터의 아이싱 생성 특성 및 억제 방법)

  • Lee, Sun-Youp;Kim, Chang-Up;Choi, Kyo-Nam;Kang, Kern-Yong
    • Journal of ILASS-Korea
    • /
    • v.14 no.4
    • /
    • pp.147-152
    • /
    • 2009
  • Since a liquid-phase LPG injection system allows accurate control of fuel injection and increase in volumetric efficiency, it has advantages in achieving higher engine power and lower emissions compared to the mixer type LPG supplying system. However, this system also leads to an unexpected event called icing phenomenon which occurs when moisture in the air near the injector freezes and becomes frost around the nozzle hole due to extraction of heat from surrounding caused by instant fuel vaporization. As a result, it becomes difficult to control air/fuel ratio in engine operation, inducing exacerbation of engine performance and HC emission. One effort to mitigate icing phenomenon is to attach anti-icing injection tip in the end of nozzle. Therefore, in this study, the effect of engine operation parameters as well as surrounding conditions on icing phenomenon was investigated in a bench test rig with commercially-used anti-icing injection tips. The test results show that considerable ice was deposited on the surface near the nozzle hole of the anti-icing tip in low rpm and low load operating conditions in ambient air condition. This is because acceleration of detachment of deposited ice from the tip surface was induced in high load, high rpm conditions, resulting in decrease in frost accumulation. The results of the bench testing also demonstrate that little or no ice was formed at surrounding temperature below a freezing point since the absolute amount of moisture contained in the intake air is too small in such a low temperature.

  • PDF

A Study on the Warpage in Injection Molded Part for Various Part Designs and Non Reinforced Resins (비 보강 수지의 종류와 사출성형품의 설계에 따른 휨의 연구)

  • Lee, M.;Kim, J.H.;Park, S.R.;Lyu, M.Y.
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.373-377
    • /
    • 2009
  • Most of the plastics products are being manufactured by injection molding. Warpage in injection molded affects the product dimension and it causes assembling problem. In this study, warpages in the injection molded part been studied. Specimens are rectangular flat shapes with and without ribs. Amorphous polymers (PC and ABS) and crystalline polymers (PP and PA66) were used for material. Flat shape with ribs showed higher warpage than flat shape without ribs by 6 to 9%. The specimens with ribs that are located parallel to the flow direction has higher warpage than specimens with ribs that are located perpendicular to the flow direction by 25 to 39%. Crystalline polymers have higher warpage than amorphous polymers by 23 to 67%. Warpage decreases as packing time increases and it increases as injection temperature increases.

A study on carbon composite fabrication using injection/compression molding and insert-over molding (사출/압축 공정과 인서트 오버몰딩을 이용한 탄소복합소재 성형에 대한 연구)

  • Jeong, Eui-Chul;Yoon, Kyung-hwan;Hong, Seok-Kwan;Lee, Sang-Yong;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.11-16
    • /
    • 2020
  • In this study, forming of carbon composite parts was performed using an injection/compression molding process. An impregnation of matrix is determined by ability of wet and flow rate between the matrix and reinforcement. The flow rate of matrix passing through the reinforcements is a function of permeability of reinforcement, a viscosity of matrix and pressure gradient on molding, and the viscosity of the matrix depends on the mold temperature, molding pressure and shear strain of matrix. Therefore, compression molding experiment was conducted using a heating mold in order to confirm the possibility of matrix impregnation. The impregnation of the matrix through the porosities between the woven yarns was confirmed by the cross-sectional SEM image of compression molded parts. An injection molding process was also performed at a short cycle time, high molding pressure and low mold temperature than those of compression experiment conditions. Deterioration of impregnation on the surface of molded parts were caused by these injection conditions and it could be the reason of decreasing the maximum tensile strength. In order to improve impregnation of matrix on the surface, injection/compression molding and insert-over molding were applied. As a result of applying injection/compression molding and insert-over molding, it was shown that the improvement of impregnation on the surface and the maximum tensile strength was increased about 2.8 times than the virgin matrix.

Effects of Synthesis Method, Melamine Content and GPC Parameter on the Molecular Weight of Melamine-Urea-Formaldehyde Resins

  • KIM, Minjeong;PARK, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.1-13
    • /
    • 2021
  • This study was conducted to investigate the effects of the synthesis method, melamine content, and GPC parameters (such as flow rate, column-detector temperature, and sample injection temperature) on the molecular weight of melamine-urea-formaldehyde (MUF) resins. Two different synthesis methods were employed. In the first method, MUF-A resins were synthesized by simultaneously reacting urea, formaldehyde, and melamine (5%, 10%, and 20%) using the reaction of alkaline-acid-alkaline steps under controlled temperature and viscosity. In the second method, MUF-B resins were synthesized by first reacting melamine at the same levels with formaldehyde and then by adding urea. The highest weight average molecular weight (Mw) of MUF-A resins was found at 10% melamine content when the flow rate was 0.3 and 0.8 ml/min; Mw decreased slightly at 20% melamine content. The results showed that Mw increased with an increase in the melamine content when the flow rate was 0.5 and 1.0 ml/min. In addition, Mw was the highest when the flow rate, column-detector temperature, and injection temperature were 0.3 ml/min, 50℃, and 25℃, respectively. On the contrary, MUF-B resins had greater Mw and number average molecular weight (Mn) than MUF-A resins. Overall, Mw and Mn increased as the melamine content increased. The optimal GPC parameter for MUF resins was determined as follows: a flow rate of 0.5 ml/min, a column-detector temperature of 50℃, and a sample injection temperature of 50℃.

The Effect of Cetane Number on Exhaust Emissions in Low-temperature Diesel Combustion (저온 디젤 연소에서 세탄가가 배기가스 특성에 미치는 영향)

  • Han, Man-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.17-22
    • /
    • 2011
  • This study is to investigate the effect of the cetane number in ultra low sulfur diesel fuel on combustion characteristics and exhaust emissions at 1500 rpm and 2.6bar BMEP in low-temperature diesel combustion with 1.9L common rail direct injection diesel engine. Low-temperature diesel combustion was achieved by adopting external high EGR rate with the strategic injection control without modification of engine components. Test fuels are ultra low sulfur diesel fuel (sulfur less than 12 ppm) with two cetane numbers (CN), i.e., CN30 and CN55. For the CN30 fuel, as a start of injection (SOI) timing is retarded, the duration of an ignition delay was decreased while still longer than $20^{\circ}CA$ for all the SOI timings. In the meanwhile, the CN55 fuel showed that an ignition delay was monotonically extended as an SOI timing is retarded but much shorter than that of the CN30 fuel. The duration of combustion for both fuels was increased as an SOI timing is retarded. For the SOI timing for the minimum BSFC, the CN30 produced nearly zero PM much less than the CN55, while keeping the level of NOx and the fuel consumption similar to the CN55 fuel. However, the CN30 produced more THC and CO than the CN55 fuel, which may come from the longer ignition delay of CN30 to make fuel and air over-mixed.

The Stability of Penicillin G Potassium Injection after Reconstitution in Various Storage Conditions (Penicillin G Potassium 주사액 조제 후 보관방법에 따른 안정성)

  • Chang, Myung Soon;Shin, Hyun Taek;Su, Ok Kyung;Lee, Suk Hyang
    • Korean Journal of Clinical Pharmacy
    • /
    • v.9 no.1
    • /
    • pp.71-76
    • /
    • 1999
  • The stability of penicillin G potassium injection after reconstitution was evaluated in two different diluents of sodium chloride $0.9\%$ and dextrose $5\%$ in water stored at room temperature or refrigerated condition. The concentrations of penicillin G, stored for 24 hours at room temperature or for 10 days at refrigerated condition, were determined by HPLC. Also the pHs of the reconstituted solutions were monitored. The concentrations and pHs of penicillin G potassium 500,000 U/ml injection after reconstitution gradually decreased in all conditions. Stored at room temperature after reconstitution, a new peak which suspected as degradation products of penicillin G was detected in 5 hours in sodium chloride $0.9\%$, 4 hours in dextrose $5\%$ in water. At refrigerated condition, the new peak was detected in 4 days in both sodium chloride $0.9\%$ and dextrose $5\%$ in water. The degradation products of penicillin G allergy have been thought to be one of the substances responsible for evoking allergic reactions. In conclusion, the penicillin G potassium 500,000 U/ml injection after reconstitution was stable for 4 hours in sodium chloride $0.9\%$ 3 hours in dextrose $5\%$ in water solution at room temperature. At refrigerated condition, both solutions were stable for 3 days after reconstitution.

  • PDF

INFLUENCE OF THERMAL CONDUCTIVITY AND VARIABLE VISCOSITY ON THE FLOW OF A MICROPOLAR FLUID PAST A CONTINUOUSLY MOVING PLATE WITH SUCTION OR INJECTION

  • Salem, A.M.;Odda, S.N.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.2
    • /
    • pp.45-53
    • /
    • 2005
  • This paper investigates the influence of thermal conductivity and variable viscosity on the problem of micropolar fluid in the presence of suction or injection. The fluid viscosity is assumed to vary as an exponential function of temperature and the thermal conductivity is assumed to vary as a linear function of temperature. The governing fundamental equations are approximated by a system of nonlinear ordinary differential equations and are solved numerically by using shooting method. Numerical results are presented for the distribution of velocity, microrotation and temperature profiles within the boundary layer. Results for the details of the velocity, angular velocity and temperature fields as well as the friction coefficient, couple stress and heat transfer rate have been presented.

  • PDF

A Study on the Emission Characteristics in 4 Stroke Large Propulsion Diesel Engine (4행정 대형 디젤엔진의 배기 배출특성에 관한 연구)

  • 김현규;전충환;장영준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.38-45
    • /
    • 2001
  • Environmental protection on the ocean has been interested and nowadays the International maritime organization(IMO) has advanced on the prevention of air pollution from ships. This study presents the emission characteristics of 4 stroke propulsion diesel engine in E2 cycle (constant speed) and E3 cycle (propeller curved speed). Also the effects of important operating parameters in terms of intake air pressure and temperature, and maximum combustion pressure are described on the specific emissions. Emissions measurement and calculation are processed according to IMO technical code. The results show that NOx emission level in E3 cycle is higher than E2 cycle due to lower engine speed and lower maximum combustion pressure by retarding fuel injection timing. Intake air temperature has strong influence on NOx emission production. And CO, HC emissions are not affected by maximum combustion pressure and intake air pressure and temperature.

  • PDF

A Study on Intelligent Generator of Optimal Process Conditions to Avoid Short Shot (미성형 방지를 위한 최적조건 생성 시스템 연구)

  • 강성남;허용정;조현찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.33-37
    • /
    • 2002
  • A short shot is a molded part that is incomplete because insufficient material was injected into the mold. Remedial actions to control the process conditions can be taken by the injection molding experts based on their knowledge and experience. However, it is very difficult for the non-experts to avoid short shot by finding the proper process conditions such as mold temperature, melt temperature and filling time. In this paper, an intelligent generator of the optimal process conditions based upon fuzzy logic algorithm is proposed so that trial and error can be minimized and the non-experts as well as the experts can also find the optimal process conditions.