• 제목/요약/키워드: injection mold design

검색결과 474건 처리시간 0.026초

발포 성형 공정에 따른 사출 성형품 무게에 관한 실험적 연구 (Experimental study on injection molding parts weight according to foam molding process)

  • 정현석;홍청민;이하성;김선용
    • Design & Manufacturing
    • /
    • 제9권3호
    • /
    • pp.24-28
    • /
    • 2015
  • Speaking in general terms the form injection process can be described as a new process-variant of already known structural foam molding technology which roots go back to the early sixties. The most limiting factors of already know foaming processes are large cell size and the lack of uniformity of these cells as well and the inability to foam all kinds of plastic materials. In this paper, Process Study on weight change in injection rate during foaming. Experimental conditions were set as the injection speed 50,150,300 and 450 mm/s. The experiments PA, PA+GF, PP, was confirmed that the weight increase to PP+TA.

  • PDF

승용차용 플라스틱 펜더의 사출성형해석과 금형설계 (The Injection Molding Analysis and The Mold Design for Automotive Plastic Fender)

  • 김헌영;김중재;김영주
    • 소성∙가공
    • /
    • 제6권6호
    • /
    • pp.489-499
    • /
    • 1997
  • The injection molding process is analyzed to get the information on the mold design parameters and the optimum process conditions for automotive plastic front fender. The gate position, runner size and cooling channel are determined by the estimation of the flow balance, packing time, uniform cooling and shrinkage and warpage in the injection molding analyses. The procedure can be used in the mold design in the early stage when developing plastic parts.

  • PDF

사출금형 냉각수의 유동 패턴이 사출성형품의 변형에 미치는 영향 (Effect of Flow Pattern of Coolant for Injection Mold on the Deformation of Injection Molding)

  • 최계광;홍석무;한성렬
    • 한국기계가공학회지
    • /
    • 제14권4호
    • /
    • pp.92-99
    • /
    • 2015
  • The deformation of injection molding is seriously affected by injection molding conditions, such as melt and mold temperature and injection and holding pressure. In these conditions, the mold temperature is controlled by flowing coolant, which can be classified by the Reynolds number in the mold-cooling channel. In this study, the deformation of the automotive side molding according to the variation of the Reynolds number in the coolant was simulated by Moldflow. In the results, as the Reynolds number was increased, the mold cooling was also increased. However, when the Reynolds number exceeded a certain range, the mold cooling was not increased further. In addition to the Moldflow verification, the mold cooling by the coolant was simulated by CFX. The CFX results confirmed that the Reynolds number significantly influenced the mold cooling. The coolant, which has a high Reynolds number value, quickly cooled the mold. However, the coolant, which has a low Reynolds number value, such as 0 points, hardly cooled the mold. In an injection molding experiment, as the Reynolds number was high, the deformation of the moldings was reduced. The declining tendency of the deformation was similar to the Moldflow results.

사출금형 안에서 코팅을 위한 충돌혼합에 관한 해석 (Analysis of impingement mixing for coating in injection mold)

  • 김슬우;이호상
    • Design & Manufacturing
    • /
    • 제13권4호
    • /
    • pp.1-9
    • /
    • 2019
  • In-mold Coating is a method that can simultaneously perform injection molding and surface coating in injection mold. The material used for coating is two-component polyurethane which is composed of polyol and isocyanate. L-type mixing head can be used to mix polyol and isocyanate uniformly, and inject them inside the mold cavity. The surface quality of the injection molded products by using in-mold coating depends on the mixing uniformity between main agent and hardener. In this study, flow analysis was performed to design a mixing head for uniform mixing of two-component polyurethane. Especially the effects of design parameters of mixing head on mixing uniformity and nozzle pressure were investigated. The parameters of mixing head were mixing chamber diameter, cleaning cylinder diameter, nozzle alignment angle in the horizontal and vertical direction, and cleaning piston position. It was found that optimal design values were mixing chamber diameter of 3.5 mm, cleaning cylinder diameter of 5.0 mm, nozzle horizontal/vertical alignment angles of 140°/160°, and cleaning piston position of 1.8 mm. The optimal values would be used to develop a two-component mixing head achieving an uniform mixing for in-mold coating.

크리깅을 이용한 전자 오븐 윈도우 부품용 사출금형의 최적설계 (Optimization of an Electron Microwave Oven Window Injection Mold Using Kriging Based Approximation Model)

  • 류미라;이권희;김영희;박흥식
    • 한국정밀공학회지
    • /
    • 제22권7호
    • /
    • pp.177-184
    • /
    • 2005
  • Recently, the engineering designer of injection mould has become more and more dependent on the CAE. In the design factors of injection mould, the shrinkage rate should be considered as one of the important performances to produce the reliable products. therefore the shrinkage rate can be mostly calculated by the MoldFlow and Pro-engineering. in the design process. However it is not easy to predict the shrinkage rate of a plastic injection mold in its design process because the analysis can take minutes to hours, the high computational costs of performing the analysis limit their use in design optimization. In this study, the surrogate models, DACE model, based on the Kriging in order to optimize the shrinkage rate of electric microwave oven window is used in lieu of the original models, facilitating design optimization.

대면적 쾌속 사출압축성형을 위한 금형설계 최적화 (A study on the Large Area Rapid-Injection Compression Molding for Mold Optimum Design)

  • 김태훈;김주연;김종섭;강정진;김종선;노승환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.99-102
    • /
    • 2009
  • The recent LCD TV market has made efforts to produce thinner, brighter, and clearer products, and experienced the rapid light source replacement from a line source of light CCFL to a point source of light LED. In particular, LGP(Light Guiding Panel) among key parts composing BLU(Back Light Unit) has limits of the injection molding technology as well as the mold design, its processing and manufacturing technology so that it is hard to produce large LGP over 40 inch. To produce large light-guide panels over 40 inch under the injection molding process, a mold 3D model was developed in the design process before manufacturing a mold and structure unification was processed through CAE analysis. As a result, it was possible to construct the mold design process, and it is expected to manufacture the optimized mold by applying the mold design and manufacturing process of large-scale rapid injection-compression molding that will be produced in the future.

  • PDF

Pro/ENGINEER를 이용한 사출금형의 표준부품 및 몰드베이스 자동생성 3D CAD 프로그램 개발 (Development of a 3D CAD Program for Standard Parts and Mold Base of Injection Mold Using Pro/ENGINEER)

  • 박필주;김관우;김종원;한기범;이현철;조해용
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권2호
    • /
    • pp.304-312
    • /
    • 2009
  • Automated design system of injection mold was developed in this study. Shapes of mold parts and mold base were defined according to standards of mold components and database modules of mold components were built. And then an automation program of mold design was developed by the user definition features, family table and Pro/Program of Pro/Engineer. The automatic production divided into mold base and standard parts was manipulated to manufacture parts meeting the design requirements and the selected parts were changed in size and shape to meet the design goals. The mold design was also carried out to have organic relations and be easy in case of a change to the mold part or mold base. As a result, it is possible to design the mold efficiently and conveniently modify the designed mold parts and base by using the developed automated design system in this study.

스테인레스계열(17-4PH, 316L, 440C) 분말을 이용한 Dental Scaler Tip 분말사출금형 개발 (Development of Powder Injection Mold for Dental Scaler Tip Using Stainless Series Powder)

  • 고영배;김종선;황철진
    • 소성∙가공
    • /
    • 제16권1호
    • /
    • pp.61-66
    • /
    • 2007
  • Powder injection molding(PIM) is widely used for many parts in the field of automotives, electronics and medical industries, due to the capability of net shaping for complex 3-D geometry. Powder injection mold design for the dental scaler tip, a component of medical appliance, was presented. In comparison with conventional machining process, powder injection molding has many advantages, specially in price and dimensional stability, for molding dental scaler tip which has complex geometry. Both product design and mold design for dental scaler tip were presented. A PIM feedstock was made of stainless series(17-4PH, 316L, 440C) powder and a wax based binder. The 'rapid mold' concept was applied to manufacture the various forms and materials of dental scaler tip including vibration characteristics.

사출금형에서 내압에 의한 응력집중 및 크랙 분석 (An Analysis of stress concentration and crack in injection mold by cavity pressure)

  • 최성현;황수진;최성주;류민영
    • 한국금형공학회:학술대회논문집
    • /
    • 한국금형공학회 2008년도 하계 학술대회
    • /
    • pp.159-162
    • /
    • 2008
  • High pressure is involved during injection molding operation specially packing phase. Cracks in the mold are often occurred by high cavity pressure. In this study, structural analysis of mold has been performed using commercial softwares, Abaqus and Ansys, to investigate cause of crack in the injection mold. Structural analysis contains four cases: stress distribution according to the cavity pressure, stress concentration according to the boundary conditions, stress concentration for inter-locking design of mold, and stress concentration for distributed cavity pressure. Through this study it was observed that the locations of stress concentrations were coincident with locations of crack. Robust mold design is being required to withstand high cavity pressure.

  • PDF

내압력.온도센서를 갖는 표준 인장시편용 사출금형설계 및 성형 (Design of Injection Mold with Cavity Pressure/Temperature Sensors and Molding for Standard Tensile Test Specimen)

  • 이도명;한병기;이옥성;이성희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1416-1419
    • /
    • 2005
  • Design and manufacturing of plastic injection mold with cavity pressure/temperature sensors were performed in the present study for tensile test specimen. Standards of mold-base and tensile test specimen were used to design an injection molding system. Cavity pressure and temperature sensors were placed on the side of fixed platen of injection mold machine to prevent them from external impact damage. Injection molding experiments with variations of injection speed and melt temperature were performed and polycarbonate tensile specimens were prepared for the tensile test. It was shown that injection molding processing parameters can have effect on the mechanical properties of the plastic injection molded part.

  • PDF