• Title/Summary/Keyword: injection mold design

Search Result 483, Processing Time 0.029 seconds

A Simulation-based Optimization of Design Parameters for Cooling System of Injection Mold by using ANOVA with Orthogonal Array (직교배열과 분산분석법을 이용한 사출금형 냉각시스템 파라미터의 시뮬레이션 최적설계)

  • Park, Jong-Cheon;Shin, Seung-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.121-128
    • /
    • 2012
  • The optimization of cooling system parameters for designing injection mold is very important to acquire the highest part quality. In this paper, the integration of computer simulations of injection molding and Analysis of Variance(ANOVA) with orthogonal array was used as a design tool to optimize the cooling system parameters aimed at minimizing the part warpage. The design optimizer was applied to find the optimum levels of cooling system parameters for a dustpan. This optimization resulted in more uniform temperature distribution over the part and significant reduction of a part warpage, showing the capability of present method as an effective design tool. The whole optimization process was performed systematically in a proper number of cooling simulations. The design optimizer can be utilized effectively in the industry practice for designing mold cooling system with less cost and time.

Development of a Runner and Gate Design System for Injection Mold Design based on Unigraphics (사출 금형에서의 솔리드 모델러 기반 런너 및 게이트 설계 시스템 개발)

  • 이상헌;김창준;조병철;이강수;양진석;허영무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.716-719
    • /
    • 1997
  • This paper describes the runner and gate design capabilities of the RAMEDS system, which is a specialized CAD system for injection mold design, dcvcloped using the application procedure interface of the Unigraphics system. In this system, runners lying on sculptuted partlng surface can be modeled by projecting the runner trajectory on the surface and sweeping a selected cross section along the projcctcd trajectory. In addtion, the system provides solid modeling capabilities for three types of gates currently.

  • PDF

Reduction of Design Variables for Automated Optimization of Injection Mold Cooling Circuit (사출금형 냉각회로 자동최적화를 위한 설계변수 감소 방안)

  • Rhee, B.O.;Choi, J.H.;Tae, J.S.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.4
    • /
    • pp.417-422
    • /
    • 2009
  • The injection mold cooling circuit optimization was studied with a response surface method in the previous research. It took so much time to find an optimum solution for a large product due to an extensive amount of calculation time for the CAE analysis. In order to use the optimization technique in the actual design process, the calculation time should be much reduced. In this study, we tried to reduce the number of design variables with the concept of the close relationship between the depth and the distance of cooling channel. The optimum ratio of the distance to the depth of cooling channels for a 2-dimensional problem was 2.0 so that the optimum ratio was again sought out for 4 large automotive parts. Therefore, the number of design variables for the cooling circuit optimization can be reduced in half, resulting in much faster running time for the optimization as a design tool.

  • PDF

Optimal Design for Injection Molding Processes using Design of Experiments and Finite Element Analysis (실험계획법과 유한요소해석을 연계한 사출성형 공정의 최적설계)

  • Park K.;Ahn J. H.;Choi S.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.150-153
    • /
    • 2001
  • The present work concerns optimal design for the injection molding process of a deflection yoke (coil separator). The optimal design for the injection molding process is developed using design of experiments and finite element analysis. Two design of experiments approaches are applied such as: the design of experiment for mold design and the design the experiments for determination of process parameters. Finite element analyses have been carried out as a design of experiments for mold design: runner system and cooling channel. In order to determine optimal process experiments have been performed for various process conditions with the design of experiments scheduling.

  • PDF

Research on Gas Injection Mold using CAE Analysis of Steering wheel Parts (자동차핸들 제품의 CAE해석을 활용한 가스 사출성형에 관한연구)

  • Kang, Sae-Ho;Woo, Chang-Ki;Kim, Ok-Rae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7729-7735
    • /
    • 2015
  • As plastic injection mold parts is suitable system mass production making mold. So thick steering wheel parts is desirable to carry out gas injection molding. Gas injection mold is skill to inject nitrogen gas postfilling melting raw material into mold. Gas injection mold have many advantage like retrenchment of material cost, upgrading the guality. etc. It was decided gate position to minimize warpage of parts analysis injection mold process using mold flow software and incase doing gas injection mold using normal p.p material. it occur big warpage. so it is object minimizing warpage of injection parts to change p.p material containing mineral 18% and removing fingering phenomenon trouble as changing gate position. Also in case carrying out gas injection mold, I did comparison and analysis to grasp shape flow in gas setting a standard gate after flowing in raw material. Through this study, I found out changing of thickness by parts shape and it can occur warpage of parts by plastic material even though it carry out gas injection mold and it had a direct influence on trouble of parts by gate position.

Comparison of cooling effects according to cooling methods in injection mold (사출금형의 냉각회로 종류에 따른 냉각효율의 비교)

  • Noh, Keon-Cheol;Jang, Min-Kyu;Je, Deok-Keun;Choi, Yoon-Sik;Jeong, Yeong-Deuk
    • Design & Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.10-13
    • /
    • 2014
  • Plastic products are producted more than 70% of total processes by the injection molding. The injection molding process has 4 processes such as filling, packing, cooling and ejecting. It spends most of times in the cooling process. Therefore, it is important to control the mold temperature in producing plastic products. The time and system of cooling affect the product's quality and productivity. Especially, cooling time has about 60% of total injection cycle time. Therefore, we can improve a productivity by shortening cooling time. This study shows comparative study about cooling efficiency of spiral channel and baffle and observed the variation of time to freeze of molding As the result of CAE experiments, cooling rate by spiral channel had faster than baffle and as freeze time was decreased. Results of this study will be used widely to design for cooling system of injection mold.

  • PDF

PERFORMANCE EVALUATION OF COOLING CHANNELS IN A PLASTIC INJECTION MOLD MODEL (사출금형의 냉각채널 성능 평가)

  • Kim, H.S.;Han, B.Y.;Lee, I.C.;Kim, Y.M.;Park, H.K.
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.53-57
    • /
    • 2012
  • Design of the cooling channels of a plastic injection mold affects the quality and the productivity of the injection processes. In the injection process, the melted resin with high temperature enters the mold cavity, and just after the cavity is filled the heat should be dissipated through the cooling channels simultaneously. The purpose of this study is to analyse the heat transfer phenomenon and to estimate the temperature distribution in the mold to evaluate the cooling effect of the channels. The injection mold is assumed to have cooling channels of circular cross section and each channel has the same coolant flow rate. and The cavity has a rectangular shape. The results show that as the cooling channels get closer to the cavity surface, the cooling efficiency increases as might easily be guessed. However, due to the final hot resin flow from the gate an intensive cooling is required in that region.

A Study on the forced ejecting for injection molding without undercut processing unit (언더컷 처리장치 없는 사출성형을 위한 강제취출에 관한 연구)

  • Lee, Hui-Chul;Lee, Hee-Jin;Kim, Kyung-Ho;Hwang, Jae-Young;Kim, Young-Sik;Ryu, Ho-Yeun
    • Design & Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.1-4
    • /
    • 2015
  • Recently, the mold industry has been developed to high-quality and high-productivity with various demands of the high-tech industry. Also, geometry parts of injection mold are complex and diverse optimum design through the injection molding analysis has become a matter of course. The mold industry is trying to revitalize the industry with demand technology development and manufacturing process improvement. However, products that have undercut is the need for a separate processing mechanism and structure of the mold is getting more complex, the cost is expensive. Therefore, improving the structure of the mold through a study on the forced ejecting for injection molding without undercut processing unit and to improve the productivity.

  • PDF

A Study on the Design of Door Module PNL Using CAE and Inverse Compensation for Warpage (휨방지를 위한 CAE와 역보정을 이용한 Door Module PNL설계에 관한 연구)

  • Kim, Doo-Tae;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.27-33
    • /
    • 2018
  • Korea's automobile industry, which has grown rapidly to become the world's fifth-largest automobile producer, To cope with environmental pollution and energy problems in order to prevail competitive edge in global market We are investing a lot of research personnel and costs. Among them, for realizing alternative light weight It is a part of the automobile module system that has achieved the technological development before the breakthrough in the injection molding process in the press process. Door module PNL was the subject of research. The door module PNL is expected to cause warpage before the mold production due to the thin and flat product characteristics and fiber orientation characteristic of the material. In this paper, CAE analysis and reverse correction tool Design. CAE analysis to obtain the results of weld line position, bending position and deformation value Through the correction tool, think3, the original product was modified before the mold production to improve the completeness of the parts. In fiber orientation, the position and size of the cooling channel in the mold, the position and size of the gate, Temperature, pressure, time, and work environment. Compared with the result of CAE analysis, the product that was reverse-corrected by Think3 was manufactured, and injection molding was performed. Injection molding products were tested 24 hours later. 3.5 mm to 7.0 mm, and under the fixed condition, the deviation was from 1.1 mm to 1.5 mm. Unlike the CAE analysis, the deviation of the actual injection pressure and the cooling temperature, the fiber orientation of the material, In order to solve this problem, it is necessary to compare the injection conditions with the database, I knew I had to catch the standard.

A study on the monitoring of cooling time using the change in the magnitude of mold vibration in injection molding (사출성형에서 공정 중 금형의 진동 크기 변화를 활용한 냉각시간 모니터링에 대한 연구)

  • Yeung, Chris;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.45-49
    • /
    • 2021
  • In this study, during the injection molding process, a device was manufactured and evaluated that calculates a cooling time by measuring a vibration signal generated from a mold using an acceleration. The last two parts, one of which has a large magnitude change in the measured vibration signal of a mold, were divided into a cooling start section (paking end section) and a mold opening section, and the time difference at the relevant points was calculated as the cooling time. The cooling time was monitored on a 5-inch light guide plate mold by applying the method. The manufactured device was attached to a fixed base of mold to measure the cooling time, and data was obtained remotely using Bluetooth technology. Then, the measured cooling time was compared with the cooling time set in the injection molding machine to evaluate the accuracy. As a result of the experiment, the cooling times measured by the devices were 15.675±0.024 sec, 20.637±0.014 sec and 25.623±0.079 sec of each conditions. Also, the measurement results were shown with errors of 0.655±0.044 sec, 0.637±0.014 sec, and 0.662±0.013 sec, respectively.