• 제목/요약/키워드: injection Machining

검색결과 103건 처리시간 0.028초

마이크로 드릴링 M/C에 의한 미세구멍가공특성에 관한 연구 (A Study on the Characteristics of Micro Deep Hole Machining in Micro Drilling Machine)

  • 민승기;이동주;이응숙;강재훈;김동우
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.275-280
    • /
    • 2001
  • Recently, the trends of industrial products grow more miniaturization, variety and mass production. Micro drilling which take high precision in cutting work is requested more micro hole and high speed working. Especially, Micro deep hole drilling is becoming more important in a wide spectrum of precision production industries, ranging from the production of automotive fuel injection nozzle, watch and camera parts, medical needles, and thick multi-layered Printed Circuit Boards(PCB) that are demanded for very high density electric circuitry. This paper shows the tool monitoring results of micro drill with tool dynamometer. And additionally, microscope with built-in monitor inspection show the relationship between burr in workpiece and chip form of micro drill machining.

  • PDF

분말 사출 성형 기술 (Powder Injection Molding Technology)

  • 하태권;성환진;안상호;장영원
    • 소성∙가공
    • /
    • 제12권6호
    • /
    • pp.521-528
    • /
    • 2003
  • Powder injection molding (PIM) uses the shaping advantage of injection molding but is applicable to metals and ceramics. This process combines a small quantity of polymer with an inorganic powder to form a feedstock that can be molded. After shaping, the polymeric binder is extracted and the powder is sintered, often to near-theoretical densities. According1y, PIM delivers structural materials in a shaping technology previously restricted to polymers. The process overcomes the shape limitations of traditional powder compaction, the costs of machining, the productivity limits of isostatic pressing and slip casting, and the defect and tolerance limitations of conventional casting. Since 1980s when major attention was given to PIM process, it has been widening the application area from small parts with complex shape and tailored properties to structural parts requiring strength and ductility as in automotive, military and medical industries.

분말사출성형된 17-4 PH STS 소결체의 밀도에 따른 인장 특성 (Effect of Relative Density on the Tensile Properties of Powder Injection Molded PH 17-4 Stainless Steel)

  • 성환진;하태권;안상호;장영원
    • 한국분말재료학회지
    • /
    • 제9권4호
    • /
    • pp.211-217
    • /
    • 2002
  • It is well known that the powder injection molding(PIM) process can overcome the shape limitations of traditional powder compaction, the costs of machining, the productivity limits of isostatic pressing and slip casting, and the defect and tolerance limitations of conventional casting. Increasing demands from industry for not only the dimensional accuracy nut mechanical strength in PIMed parts have had much effort focused on the investigation of mechanical properties of mechanical strength in PIMed parts have had much effort focused on the investigation of mechanical properties of sintered parts formed with high-strength metallic powders. The 17_4 PH $10\mu{m}$ were injection-molded into flat tensile specimens. Sintering of the compacts was carried out at the various temperatures ranging from 900 to $1350^{\circ}C$. Sintering behavior of the compacts and tensile properties of sintered specimens were investigated.

미세 폴 구조물 가공을 위한 마이크로 앤드밀링 기술 (Micro End-milling Technology for Micro Pole Structures)

  • 제태진;최두선;이응숙;홍성민;이종찬;최환
    • 한국기계가공학회지
    • /
    • 제4권4호
    • /
    • pp.7-13
    • /
    • 2005
  • In the case of fabricating micro pole structures such as column, square-pole and gear shaft by the micro end-milling process, it can be useful in the fields of industry, for example, micro parts, electrode for electrical discharge machining and micro mold for injection molding. In this study, machining factors and the process were analyzed. Machining experiments of various micro pole configurations were performed. Analysis of the change and effect of the cutting force according to the machining conditions was carried out. An analytical study of the deformation of the micro pole caused cutting conditions and cutting force through the finite element method and ANSYS program was carried out. As a result, this research presented a method of fabricating the column pole of below $100{\mu}m$ diameter with high aspect ratio by using micro end-milling process, and based on that, a method of fabricating a variety of applicable structures. Also the minimum size of the pole capable of fabricating through theory and experiment were demonstrated.

  • PDF

금형자동 설계시스템 (GPMCAD 시스템) (Goldstar plastic mold components automatic design system)

  • 성재기;송상호;서정원;강동진;허보석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.546-551
    • /
    • 1988
  • In design of the plastic injection mold, Almostdatas for the mold are decided During the assembly design. In this study, the designer will be able to carry out not only components design but also creation of machining data automatically, by the assembly data.

  • PDF

분말사출성형을 이용한 치과용 스케일러 팁의 진동특성 개선에 관한 연구 (A Study for Vibrational Characteristics Improvement of Dental Scaler Tip using Powder Injection Molding)

  • 황철진;김종선;고영배;정성택
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.343-344
    • /
    • 2006
  • Powder injection molding(PIM) is widely used for many parts in the field of automotives, electronics and medical industries, due to the capability of net shaping for complex 3-D geometry. Powder injection mold design fur the dental scaler tip, a component of medical appliance, was presented. In comparison with conventional machining process, powder injection molding has many advantages, specially in price and dimensional stability, for molding dental scaler tip which has complex geometry. Both product design and mold design for dental scaler tip were presented. The 'rapid mold' concept was applied to manufacture the various forms of dental scaler tip.

  • PDF

Ultrasonically Assisted Grinding for Mirror Surface Finishing of Dies with Electroplated Diamond Tools

  • Isobe, Hiromi;Hara, Keisuke;Kyusojin, Akira;Okada, Manabu;Yoshihara, Hideo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권2호
    • /
    • pp.38-43
    • /
    • 2007
  • This paper describes ultrasonically assisted grinding used to obtain a glossy surface quickly and precisely. High-quality surfaces are required for plastic injection molding dies used in the production of plastic parts such as dials for cellular phones. Traditionally, in order to finish the dies, manual polishing by a skilled worker has been required after the machining processes, such as electro discharge machining (EDM), which leaves an affected layer, and milling, which leaves tooling marks. However, manual polishing causes detrimental geometrical deviations of the die and consumes several days to finish a die surface. Therefore, a machining process for finishing dies without manual polishing to improve the surface roughness and form accuracy would be extremely valuable. In this study, a 3D positioning machine equipped with an ultrasonic spindle was used to conduct grinding experiments. An electroplated diamond tool was used for these experiments. Generally, diamond tools cannot grind steel because of excessive wear as a result of carbon atoms diffusing into bulk steel and chips. However, ultrasonically assisted grinding can achieve a fine surface (roughness Rz of $0.4{\mu}m$) on die steel without severe tool wear. The final aim of this study is to realize mirror surface grinding for injection molding dies without manual polishing. To do this, it is necessary to fabricate an electroplated diamond tool with high form accuracy and low run-out. This paper describes a tool-making method for high precision grinding and the grinding performance of a self-electroplated tool. The ground surface textures, tool performance and tool life were investigated A ground surface roughness Rz of 0.14 um was achieved Our results show that the spindle speed, feed rate and cross feed affected the surface texture. One tool could finish $5000mm^2$ of die steel surface without any deterioration of the ground surface roughness.

등온압축성형공법을 이용한 폴리머 렌즈 성형 (Isothermal Compression Molding for a Polymer Optical Lens)

  • 오병도;권현성;김순옥
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.996-999
    • /
    • 2008
  • Aspheric polymer lens fabrication using isothermal compression molding is presented in this paper. Due to increasing definition of an image sensor, higher precision is required by a lens which can be used as a part of an imageforming optical module. Injection molding is a factory standard method for a polymer optical lens. But achievable precision using injection molding has a formidable limitation due to the machining of complex mold structure and melting and cooling down a polymer melt under high pressure condition during forming process. To overcome the precision requirement and limitation using injection molding method, isothermal compression molding is applied to fabrication of a polymer optical lens. The fabrication condition is determined by numerical simulations of temperature distribution and given material properties. Under the found condition, the lens having a high precision can successfully be reproduced and does not show birefringence which results often in optical degradation.

  • PDF

절삭가공용 고압분사 홀더 개발에 관한 연구 (A Study on the Development of High Pressure Holder for Machining)

  • 이중섭;정인국;서정세;정상완
    • 한국기계가공학회지
    • /
    • 제11권6호
    • /
    • pp.55-61
    • /
    • 2012
  • In this study, it was grasped to the flow characteristics of injection nozzle installed in high pressure holder for improving productivity. Chip curling occurred during cutting process for difficult-to-cut material detracts product qualities and productivity. Among of method preventing the phenomenon, high pressure injecting cutting oil is an alterative. In this study, the optimal nozzle was designed by CFD method and it was conducted to analyse on the effect of high pressure injection on chip shape generated during cutting process and wear of insert by experimental method. As the result, it could be confirmed that high pressure injection is favorable for preventing chip curling and insert from wearing.