• Title/Summary/Keyword: initiation stress

Search Result 644, Processing Time 0.026 seconds

Fatigue Assessment of Load-carrying Asymmetric Double Bevel Cruciform Welded Joints using Structural Stress Approach (구조응력을 이용한 하중 전달형 십자 양면 비대칭 필렛 용접 시험편의 피로강도 평가)

  • Kim, Seong-Min;Kim, Young-Nam;Lee, Seung-Hyun;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.86-91
    • /
    • 2012
  • Fatigue tests and analyses were carried out to investigate fatigue strength and crack initiation point of load-carrying asymmetric double bevel cruciform welded joints. Mesh-insensitive structural stress approach was adopted to estimate high precise fatigue life and crack initiation point. Two different case material and weld shape were considered in this study. Results of fatigue tests and analyses were compared and discussed in consideration of applicability of structural stress approach as the reliable fatigue assessment method of cruciform welded joints.

Separation Mode Analysis of Track Assembly of Main Battle Tank (궤도형 전투차량의 궤도박리 발생 및 성장모드 예측에 관한 연구)

  • Lee, Kyoung-Ho;Park, Byoung-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.173-180
    • /
    • 2007
  • In this paper, we have proposed a simple finite element model for separation mode analysis on the roadwheel and track assembly of main battle tank and established a contact stress-based mechanism which could explain the initiation and growth of separation defect occurred during the test of padreplacable track. It was proved that the longitudinal contact shear stress component on the pin hole region of the track shoe body which is parallel to the driving direction is consistent with the crack initiation at the bonding surface between track shoe and wheel-side rubber. The longitudinal shear stress increased locally near the separated region after the separation initiated. So we could assume that the local stress concentration accelerates the separation growth according to the shear mode.

Formulation of Failure Strain according to Average Stress Triaxiality of Low Temperature High Strength Steel (EH36) (저온용 고장력강(EH36)의 평균 응력 삼축비에 따른 파단 변형률 정식화)

  • Choung, Joonmo;Nam, Woongshik
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.19-26
    • /
    • 2013
  • Stress triaxiality is recognized as one of the most important factors for predicting the failure strain of ductile metals. This study dealt with the effect of the average stress triaxiality on the failure strain of a typical low-temperature high-strength marine structural steel, EH36. Tensile tests were carried out on flat specimens with different notches, from relatively smooth to very sharp levels. Numerical simulations of each specimen were performed by using ABAQUS. The failure initiation points in numerical simulations were identified from a comparison of the engineering stress vs. strain curves obtained from experiments with simulated ones. The failure strain curves for various dimensionless critical energy levels were established in the average stress triaxiality domain and compared with the identified failure strain points. It was observed that most of the failure initiation points were approximated with a 100% dimensionless critical energy curve. It was concluded that the failure strains were well expressed as a function of the average stress triaxiality.

Fatigue property analysis of U rib-to-crossbeam connections under heavy traffic vehicle load considering in-plane shear stress

  • Yang, Haibo;Qian, Hongliang;Wang, Ping
    • Steel and Composite Structures
    • /
    • v.38 no.3
    • /
    • pp.271-280
    • /
    • 2021
  • In this study, the fatigue property of U rib-to-crossbeam connections in orthotropic steel bridge (OSB) crossbeams under heavy traffic vehicle load was investigated considering the effects of in-plane shear stress. The applicability of an improved structural stress (ISS) method was validated for the fatigue behavior analysis of nonwelded arc-shaped cutout regions in multiaxial stress states. Various types of fatigue testing specimens were compared for investigating the equivalent structural stress, fatigue crack initiation positions, and failure modes with the unified standards. Furthermore, the implications of OSB crossbeams and specified loading cases are discussed with respect to the improved method. The ISS method is proven to be applicable for analyzing the fatigue property of nonwelded arc-shaped cutout regions in OSB crossbeams. The used method is essential for gaining a reliable prediction of the most likely failure modes under a specific heavy traffic vehicle load. The evaluated results using the used method are proven to be accurate with a slighter standard deviation. We obtained the trend of equivalent structural stress in arc-shaped cutout regions and validated the crack initiation positions and propagation directions by comparing them with the fatigue testing results. The implications of crossbeam spans on fatigue property are less significant than the effects of crossbeams.

Low Cycle Fatigue Life Evaluation of External Grooved C-shaped Specimen (외경홈을 지닌 C형 시험편의 저주기 피로수명평가)

  • Lee, Song-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.199-208
    • /
    • 1997
  • A local strain approach was applied to an external single and double grooved C-shaped specimen in order to evaluate and predict the fatigue crack initiation life by using low cycle fatigue properties. The low cycle fatigue properties were determined from the strain-controlled fatigue tests using smooth cylindrical axial specimens. Fatigue crack initiation life was evaluated by a life prediction software, FALIPS, based on the local strain approach. The fatigue life was significantly influenced by the mean stress, and SWT parameter represented the fatigue life effectively. The predicted fatigue crack initiation life was then compared to the experimental fatigue life evaluated from the C-shaped fatigue test specimens. A good correlation was found between the experimental and predicted fatigue lives within factors of 2 and 4 for the single and double grooved C-shaped specimens respectively. Also, experimental fatigue life of the double grooved specimen was 10-12 times longer than that of the single grooved specimen.

An analysis of the wrinkling initiation in sheet metal forming using bifurcation theory (분기좌굴이론을 이용한 박판성형공정에서의 주름발생해석)

  • 김종봉;양동렬;윤정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.28-31
    • /
    • 1998
  • Wrinkling is one of the major defects in sheet metal products and may be also attributable to the wear of the tool. The initiation and growth of the wrinkles are influenced by many factors such as stress state, mechanical properites of the sheet material, geometry of the body, and contact condition. It is difficult to analyze the wrinkling initiation and growth considering the factors because the effects of the factors are very complex and the wrinkling behavior may show wide variation for small deviation of the factors. In this study, the bifurcation theory is introduced for the finite element analysis of wrinkling initiation and growth, All the above mentioned factors are conveniently considered by finite element method. The finite element formulation is based on the incremental deformation theory and elastic-plastic material modeling. The finite element analysis is carried out using the continuum-based resultant shell elements considering the planar anisotropy of the sheet metal. The proposed method is verified by employing to column buckling problem. And then, the initiation and growth of wrinkling in deep drawing of cylindrical cup are analyzed.

  • PDF

Initiation and Growth Behavior of Small Surface Fatigue Cracks on SiC Whisker Reinforced Aluminum Composite (SiC 휘스커 강화 알미늄기 복합재료의 미소 표면 피로균열의 발생 및 진전거동)

  • Choe, Yeong-Geun;Lee, Taek-Sun;Kim, Sang-Tae;Seo, Chang-Min;Lee, Mun-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1584-1592
    • /
    • 2000
  • Reversed plane bending fatigue tests were conducted on SiC whisker reinforced aluminum composite which were consolidated by squeeze casting process. Initiation and growth of small surface fatigue c racks were investigated by means of a plastic replica technique. The fatigue crack initiated in the vicinity of SiC whisker/matrix interface. It was found that a fatigue crack deflected along SiC whisker and grew in a zig-zag manner microscopically, although the crack propagated along the direction normal to the loading axis macroscopically. The coalescence of micro-cracks was observed in the tests conducted at high stress levels, but were not evident in tests in which lower levels of stress were applied. Due to the coalescence, a higher crack growth rate of small cracks rather than those of long cracks was recognized in da/dn -ΔK realtionship.

Distinct element simulation of cavity development and fluid behavior caused by fluid injection (수압작용에 따른 지반내 공동생성 및 수리거동에 대한 개별요소해석)

  • Jeon, Je-Sung;Kim, Ki-Young;Kim, Jae-Hong;Lee, Jong-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.676-679
    • /
    • 2008
  • Numerical simulations of fluid injection into particulate materials were conducted to observe cavity initiation and propagation using distinct element method. After generation of initial particles and wall elements, confining stress was applied by servo-control method. The fluid scheme solves the continuity and Navior-Stokes equations numerically, then derives pressure and velocity vectors for fixed grid by considering the existence of particles within the fluid cell. Fluid was injected as 7-step into the assembly in the x-direction from the inlet located at the center of the left boundary under confining stress condition, 0.1MPa and 0.5MPa, respectively. For each simulation, movement of particles, flow rate, fluid velocity, pressure history, wall stress including cavity initiation and propagation by interaction of flulid-paricles were analyzed.

  • PDF

Crack Coalescence in Rock Bridges under Uniaxial Compression (단축압축 하의 암석 브릿지에서의 균열 결합)

  • Park, Nam-Su;Jeon, Seokwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.2
    • /
    • pp.23-32
    • /
    • 2001
  • Rock masses are usually discontinuous in nature, as a result of various geological processes they have underdone and they contain rock joints and bridges. Crack propagation and coalescence processes mainly cause rock failures in tunnels. In this study, we focused on the crack initiation, propagation and coalescence process of rock materials containing two pre-existing open cracks arranged in different geometries. During uniaxial compression, wing crack initiation stress, wing crack propagation angle, and crack coalescence stress of Diastone gypsum and Yeosan Marble specimens were examined. And crack initiation, propagation, and coalescence processes were observed. Shear, tensile and mixed (shear+tensile) types of crack coalescence occurred. To compare the experimental results with Ashby & Hallam model, crack coalescence stress was normalized and it generally agreed with the experimental results.

  • PDF

Reference Stress Based Fracture Mechanics Analysis for Circumferential Through-Wall Cracked Pipes - Comparison with Pipe Test Data - (참조응력 개념을 이용한 원주방향 관통균열 배관의 파괴 역학 해석 - 실배관 실험 데이터와의 비교 -)

  • Huh, Nam-Su;Shim, Do-Jun;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.638-646
    • /
    • 2003
  • This paper presents experimental validation of the enhanced reference stress based J estimates for circumferential through-wall cracked pipes. recently proposed by authors. Using the pipe test data for circumferential through-wall cracked pipes, the predicted fracture initiation and maximum moments according to the proposed enhanced reference stress method are compared with experimental ones as well as predictions from the R6 method. The results show that both the R6 method and the proposed method give conservative estimates of initiation and maximum moments for circumferential through-wall cracked pipes, compared to experimental data. For longer cracks, the proposed method reduces conservatism embedded in estimated J according to the R6 method, and the resulting predictions are less conservative, compared to those from the R6 method. For shorter cracks, on the other hand, the proposed method reduces possible non-conservatism embedded in estimated J according to the R6 method, and the resulting predictions are slightly more conservative.