• Title/Summary/Keyword: initialization method

검색결과 188건 처리시간 0.02초

병렬 마이크로 유전자 알고리즘을 이용한 복합재 적층 구조물의 최적설계 (Optimal Design of Laminated Stiffened Composite Structures using a parallel micro Genetic Algorithm)

  • 이무근;김천곤
    • Composites Research
    • /
    • 제21권1호
    • /
    • pp.30-39
    • /
    • 2008
  • 본 논문에서는 기존의 유전자 알고리즘을 대신하여 병렬 마이크로 유전자 알고리즘을 사용한 복합재료 적층 구조물의 최적설계를 수행하였다. 마이크로 유전자 알고리즘은 한 세대 당 보통 5개의 개체로 해를 탐색한다 비록 세대를 구성하는 인구수는 적지만 공칭수렴 판단과 재초기화 과정을 통해 다양성을 제공하기 때문에 최적해 탐색이 가능하다. 2가지의 복합재 구조물의 최적화 문제를 가정하고 이를 마이크로 유전자 알고리즘을 사용하여 해를 구하였다. 효율성 판단을 위해서 기존의 유전자 알고리즘과 결과를 비교하였다. 두 문제 모두 마이크로 유전자 알고리즘이 비슷한 결과를 도출하면서도 약 70%의 계산량 감소를 보였다. 마이크로 유전자 알고리즘을 사용하여 일정 범위 내에서 변하는 하중을 받고 있는 복합재 적층 구조물의 최적설계를 수행하였다. 계산 결과 고정된 하중상태 하에서 얻은 최적해보다 하중 변화에 덜 민감한 설계변수를 얻을 수 있었다. 이상의 문제를 통해 다양한 설계변수를 갖는 복합재 적층 구조물의 최적설계의 한 방법으로서 마이크로 유전자 알고리즘이 효율적임을 확인하였다.

위성 TBB 자료의 운정온도 분석을 이용한 태풍 최대 풍속 지점의 객관적 결정 (Objective Estimation of the Maximum Wind Position in Typhoon using the Cloud Top Temperature Analysis of the Satellite TBB Data)

  • 하경자;오병철
    • 한국지리정보학회지
    • /
    • 제1권1호
    • /
    • pp.86-98
    • /
    • 1998
  • 폭풍 해일의 예측을 위한 초기 자료로서의 정보를 공급하기 위하여 태풍 중심과 최대 풍속 지점의 분석 기술이 기압장과 바람장의 초기화 과정내에서 개발되었다. 이 연구는 태풍 파라메타의 준자동화와 준객관 분석을 목적으로 하였으며 GMS 적외선과NOAA의 채널 4와 5의 적외 자료를 이용하여 실시간 자료를 사용하는 분석 과정과 이로부터 몇 사례에 적용하여 얻은 결과를 보이고 있다. 이 방법은 태풍의 최근접 눈벽 근처에서 대류운의 운정 고도를 분석하여 태풍 파라메타를 결정하는 간단한 방법이다. 태풍눈을 중심으로 등방성으로 원대칭하게 단면도를 구성하여 최대 운정 고도가 나타나는 지점을 최대 풍속 지점으로 결정하는 방법으로, 최대 상승 지역인 눈벽 지점이 최대 지상 풍속 지점으로 간주되었다. 태풍 중심의 추정 결과는 종관 분석에 의한 경로와 잘 일치하였으며, 최대 풍속 지점은 눈에서부터 50에서 200km내에 나타났다. GMS와 NOAA의 적외 자료를 이용한 분석 결과를 비교하면, NOAA 자료에서 얻은 최대 풍속 반경이 GMS의 그것보다 더 큰 값을 보였다.

3D 렌더링 및 실시간 물체 검출 기능 탑재 캔위성 시스템 개발 (Development of CanSat System With 3D Rendering and Real-time Object Detection Functions)

  • 김영준;박준수;남재영;유승훈;김송현;이상현;이영건
    • 한국항공우주학회지
    • /
    • 제49권8호
    • /
    • pp.671-680
    • /
    • 2021
  • 본 논문은 정찰용 하드웨어와 소프트웨어를 설계하고 제작하여 캔위성 플랫폼과 지상국에 탑재 후 기능을 검증한 내용을 다루고 있다. 주요 정찰 임무는 크게 2가지로 구성되는데, 레이더와 GPS, IMU 센서를 이용해 주변 지형을 3D로 렌더링하는 지형탐색과 광학 카메라 영상분석을 통한 실시간 주요 물체 검출이다. 그리고 캔위성 시스템의 완성도를 높이기 위해 GUI 소프트웨어를 통해 데이터 분석효율을 향상하였다. 구체적으로 지형정보와 물체 탐지정보를 실시간으로 지상국에서 확인할 수 있는 소프트웨어를 제작하였으며, 비정상패킷 예외처리와 시스템 초기화 기능을 통해 임무 실패를 방지하였다. 통신계는 LTE와 AWS 서버를 통한 통신을 메인 채널로 사용했고, 보조 채널로 지그비를 사용하였다. 완성된 캔위성을 로켓 발사 방식과 드론 탑재 방식으로 공중 낙하 실험하였다. 실험 결과, 지형탐색과 물체 검출 성능이 우수하였으며, 모든 결과를 실시간으로 처리 후 지상국 소프트웨어에 성공적으로 시현하였다.

Is there any Potential Clinical Impact of Serum Phosphorus and Magnesium in Patients with Lung Cancer at First Diagnosis? A Multi-institutional Study

  • Kouloulias, Vassilis;Tolia, Maria;Tsoukalas, Nikolaos;Papaloucas, Christos;Pistevou-Gombaki, Kyriaki;Zygogianni, Anna;Mystakidou, Kyriaki;Kouvaris, John;Papaloucas, Marios;Psyrri, Amanda;Kyrgias, George;Gennimata, Vasiliki;Leventakos, Konstantinos;Panayiotides, Ioannis;Liakouli, Zoi;Kelekis, Nikolaos;Papaloucas, Aristofanis
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권1호
    • /
    • pp.77-81
    • /
    • 2015
  • Background: The aim of the study was to determine whether the expression of baseline phosphorus (P) and magnesium (Mg) levels were prognostic in terms of stage and overall survival (OS) in newly diagnosed non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) patients. Materials and Methods: Retrospectively, 130 patients were selected at the time of diagnosis oflung cancer (100 with NSCLC and 30 with SCLC), before the initialization of any chemo-radiotherapy. The median age was 67 (range 29-92). IA, IB, IIA, IIB, IIIA, IIIB and IV stages were present in 3, 4, 19, 6, 25, 8, and 65 patients, respectively. After centrifugation, the levels of serum P and Mg were measured using the nephelometric method/ photometry and evaluated before any type of treatment. Results: Higher than normal levels of P were found in 127/130 patients, while only four patients had elevated Mg serum values. In terms of Spearman test, higher P serum values correlated with either stage (rho=- 0.334, p<0.001) or OS (rho=-0.212, p=0.016). Additionally, a significant negative correlation of Mg serum levels was found with stage of disease (rho=-0.135, P=0.042). On multivariate cox-regression survival analysis, only stage (p<0.01), performance status (p<0.01) and P serum (p=0.045) showed a significant prognostic value. Conclusions: Our study indicated that pre-treatment P serum levels in lung cancer patients are higher than the normal range. Moreover, P and Mg serum levels are predictive of stage of disease. Along with stage and performance status, the P serum levels had also a significant impact on survival. This information may be important for stratifying patients to specific treatment protocols or intensifying their therapies. However, larger series are now needed to confirm our results.

기상청 기후예측시스템(GloSea)의 앙상블 확대를 통해 살펴본 신호대잡음의 역설적 특징(Signal-to-Noise Paradox)과 예측 스킬의 한계 (Characteristics of Signal-to-Noise Paradox and Limits of Potential Predictive Skill in the KMA's Climate Prediction System (GloSea) through Ensemble Expansion)

  • 현유경;박연희;이조한;지희숙;부경온
    • 대기
    • /
    • 제34권1호
    • /
    • pp.55-67
    • /
    • 2024
  • This paper aims to provide a detailed introduction to the concept of the Ratio of Predictable Component (RPC) and the Signal-to-Noise Paradox. Then, we derive insights from them by exploring the paradoxical features by conducting a seasonal and regional analysis through ensemble expansion in KMA's climate prediction system (GloSea). We also provide an explanation of the ensemble generation method, with a specific focus on stochastic physics. Through this study, we can provide the predictability limits of our forecasting system, and find way to enhance it. On a global scale, RPC reaches a value of 1 when the ensemble is expanded to a maximum of 56 members, underlining the significance of ensemble expansion in the climate prediction system. The feature indicating RPC paradoxically exceeding 1 becomes particularly evident in the winter North Atlantic and the summer North Pacific. In the Siberian Continent, predictability is notably low, persisting even as the ensemble size increases. This region, characterized by a low RPC, is considered challenging for making reliable predictions, highlighting the need for further improvement in the model and initialization processes related to land processes. In contrast, the tropical ocean demonstrates robust predictability while maintaining an RPC of 1. Through this study, we have brought to attention the limitations of potential predictability within the climate prediction system, emphasizing the necessity of leveraging predictable signals with high RPC values. We also underscore the importance of continuous efforts aimed at improving models and initializations to overcome these limitations.

32-bit RISC-V상에서의 PIPO 경량 블록암호 최적화 구현 (Optimized Implementation of PIPO Lightweight Block Cipher on 32-bit RISC-V Processor)

  • 엄시우;장경배;송경주;이민우;서화정
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권6호
    • /
    • pp.167-174
    • /
    • 2022
  • PIPO 경량 블록암호는 ICISC'20에서 발표된 암호이다. 본 논문에서는 32-bit RISC-V 프로세서 상에서 PIPO 경량 블록암호 ECB, CBC, CTR 운용 모드의 단일 블록 최적화 구현과 병렬 최적화 구현을 진행한다. 단일 블록 구현에서는 32-bit 레지스터 상에서 효율적인 8-bit 단위의 Rlayer 함수 구현을 제안한다. 병렬 구현에서는 병렬 구현을 위한 레지스터 내부 정렬을 진행하며, 서로 다른 4개의 블록이 하나의 레지스터 상에서 Rlayer 함수 연산을 진행하기 위한 방법에 대해 설명한다. 또한 CBC 운용모드의 병렬 구현에서는 암호화 과정에 병렬 구현 기법 적용이 어렵기 때문에 복호화 과정에서의 병렬 구현 기법 적용을 제안하며, CTR 운용모드의 병렬 구현에서는 확장된 초기화 벡터를 사용하여 레지스터 내부 정렬 생략 기법을 제안한다. 본 논문에서는 병렬 구현 기법이 여러 블록암호 운용모드에 적용 가능함을 보여준다. 결과적으로 ECB 운용모드에서 키 스케줄 과정을 포함하고 있는 기존 연구 구현의 성능 대비 단일 블록 구현에서는 1.7배, 병렬 구현에서는 1.89배의 성능 향상을 확인하였다.

손 동작 인식을 통한 인간 - 컴퓨터 인터페이스용 저가형 비주얼 모션 데이터 글러브 (Inexpensive Visual Motion Data Glove for Human-Computer Interface Via Hand Gesture Recognition)

  • 한영모
    • 정보처리학회논문지B
    • /
    • 제16B권5호
    • /
    • pp.341-346
    • /
    • 2009
  • 모션 데이터 글러브는 손의 움직임을 측정하여 컴퓨터에 입력하는 대표적인 인간과 컴퓨터간의 인터페이스 도구로서, 홈 오토에이션, 가상 현실, biometrics, 모션 캡쳐 등의 컴퓨터 신기술에 사용되는 필수 장비이다. 본 논문에서는 대중화를 위하여, 별도의 특수 장비 없이 사용 가능한 저가형 비주얼 모션 데이터 글러브를 개발하고자 한다. 본 방식의 특징은 기존의 모션 데이터 글러브에 사용되었던, 고가의 모션 센싱 섬유를 사용하지 않음으로써, 저가형으로 개발이 가능하다는 것이다. 따라서 제작이 용이하고 대중화에 크게 기여할 수 있다는 장점을 가진다. 본 방식에서는 모션 센싱 섬유를 사용하는 기계적인 방식대신 광학적 모션 캡쳐 기술을 개량한 비주얼 방식을 채택한다. 기존의 비주얼 방식에 비해 본 방식은 다음과 같은 장점과 독창성을 가진다. 첫째, 기존의 비주얼 방식은 가려짐 현상을 제거하고 3차원 자세 복원을 위해 많은 수의 카메라와 장비를 사용하는 데 비해, 본 방식은 모노비전 방식을 채택하여 장비가 간소하고 저가형 개발이 가능하다. 둘째, 기존의 모노비전방삭은 가려짐 현상에 취약하여 영상에서 가려진 부분은 3차원 자세 복원이 어려웠다. 하지만 본 논문은 독창적으로 설계된 막대 모양의 지시자를 사용하여, 영상에서 가려진 부분도 3차원 자세 복원이 가능하다. 셋째, 기존의 모노 비전 방식은 비선형 수치해석 형태의 영상 해석 알고리즘을 사용하는 경우가 많아서 초기화나 계산시간 면에서 불편하였다. 하지만, 본 논문에서는 독창적인 공식화 방법을 사용하여 닫힌 형태의 영상해석 알고리즘을 도출함으로써 이와 같은 불편을 개선하였다. 넷째, 기존의 닫힌 형태의 알고리즘은 공식화 과정에서 근사화 방법을 도입하는 경우가 많아서 정확도가 떨어지고 특이점에 의한 응용분야에 제한이 있었다. 하지만 본 방식은 오일러 각과 같은 국부적인 매개화나 근사화 등을 사용하는 대신 지수형태의 트위스트좌표계를 사용하는 독창적인 공식화 방법을 사용하여, 공식화 단계에서의 근사화 방법 없이 닫힌 형태의 알고리즘을 도출함으로써 이 문제들을 개선하였다.

CNN을 적용한 한국어 상품평 감성분석: 형태소 임베딩을 중심으로 (Sentiment Analysis of Korean Reviews Using CNN: Focusing on Morpheme Embedding)

  • 박현정;송민채;신경식
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.59-83
    • /
    • 2018
  • 고객과 대중의 니즈를 파악하기 위한 감성분석의 중요성이 커지면서 최근 영어 텍스트를 대상으로 다양한 딥러닝 모델들이 소개되고 있다. 본 연구는 영어와 한국어의 언어적인 차이에 주목하여 딥러닝 모델을 한국어 상품평 텍스트의 감성분석에 적용할 때 부딪히게 되는 기본적인 이슈들에 대하여 실증적으로 살펴본다. 즉, 딥러닝 모델의 입력으로 사용되는 단어 벡터(word vector)를 형태소 수준에서 도출하고, 여러 형태소 벡터(morpheme vector) 도출 대안에 따라 감성분석의 정확도가 어떻게 달라지는지를 비정태적(non-static) CNN(Convolutional Neural Network) 모델을 사용하여 검증한다. 형태소 벡터 도출 대안은 CBOW(Continuous Bag-Of-Words)를 기본적으로 적용하고, 입력 데이터의 종류, 문장 분리와 맞춤법 및 띄어쓰기 교정, 품사 선택, 품사 태그 부착, 고려 형태소의 최소 빈도수 등과 같은 기준에 따라 달라진다. 형태소 벡터 도출 시, 문법 준수도가 낮더라도 감성분석 대상과 같은 도메인의 텍스트를 사용하고, 문장 분리 외에 맞춤법 및 띄어쓰기 전처리를 하며, 분석불능 범주를 포함한 모든 품사를 고려할 때 감성분석의 분류 정확도가 향상되는 결과를 얻었다. 동음이의어 비율이 높은 한국어 특성 때문에 고려한 품사 태그 부착 방안과 포함할 형태소에 대한 최소 빈도수 기준은 뚜렷한 영향이 없는 것으로 나타났다.