• Title/Summary/Keyword: initial surface elevation

Search Result 22, Processing Time 0.021 seconds

Characteristicsin Spatial Distribution of Incision and Uplift Based on the Highest Level Terraces Around the Taebaek Mountains (하안단구 최고위면에 기초한 태백 산지 일대의 하각과 융기의 공간 분포 특성)

  • Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.2
    • /
    • pp.31-42
    • /
    • 2018
  • This study analyzes the spatial distribution of the highest level terrace which can be regarded as an initial land surface before the uplift of the Taebaek Mountains and estimates spatial characteristics of the incision and uplift rates around the Mountains. The altitude above the riverbed of the 54 highest level terraces seems to be greatly influenced by the incision of large stream and their elevation shows a high correlation with the uplift of the Mountains. The elevation of the terraces in the north and middle parts decreases westward with a rate of 5~6 m/km and meets with the sea level at area 100~120 km apart from the Mountains. Therefore, it can be suggested that the west coast of Korea might have generally experienced subsidence during the Quaternary. The elevation of the terraces suggests that area with a direction of N-S or NNW-SSE from Yeoryang-myeon, Jeongseon-gun to Taebaek-si shows the highest uplift rate around the Mountains and area with a direction of N-S connecting Girin-myeon, Inje-gun and Pyeongchang-eup, Pyeongchang-gun also indicates a high uplift rate.

Bi-stability in a vertically excited rectangular tank with finite liquid depth

  • Spandonidis, Christos C.;Spyrou, Kostas J.
    • Ocean Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.229-238
    • /
    • 2012
  • We discuss the bi - stability that is possibly exhibited by a liquid free surface in a parametrically - driven two-dimensional (2D) rectangular tank with finite liquid depth. Following the method of adaptive mode ordering, assuming two dominant modes and retaining polynomial nonlinearities up to third-order, a nonlinear finite-dimensional nonlinear modal system approximation is obtained. A "continuation method" of nonlinear dynamics is then used in order to elicit efficiently the instability boundary in parameters' space and to predict how steady surface elevation changes as the frequency and/or the amplitude of excitation are varied. Results are compared against those of the linear version of the system (that is a Mathieu-type model) and furthermore, against an intermediate model also derived with formal mode ordering, that is based on a second - order ordinary differential equation having nonlinearities due to products of elevation with elevation velocity or acceleration. The investigation verifies that, in parameters space, there must be a region, inside the quiescent region, where liquid surface instability is exhibited. There, behaviour depends on initial conditions and a wave form would be realised only if the free surface was substantially disturbed initially.

Experimental Study on Hydrodynamic Characteristics of Dam Break Flow for Estimation of Green Water Loading (청수현상 추정을 위한 댐 붕괴 흐름의 유체동역학적 특성에 관한 실험적 연구)

  • Hyung Joon Kim;Jong Mu Kim;Jae Hong Kim;Kwang Hyo Jung;Gang Nam Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.2
    • /
    • pp.120-134
    • /
    • 2023
  • In this study, hydrodynamic characteristics of dam break flow were investigated by a series of experiments. The experiments were performed in a 2-D rectangular flume with obtaining instantaneous images of dam break flow to capture the free surface elevation, and pressure distributions on vertical wall and bottom of the flume. The initial water depth of the dam break flow was changed into 3 different heights, and the gate opening speed was changed during the experiments to study the effect of the gate speed in the dam break flow. Generation of dam break phenomena could be classified into three stages, i.e., very initial, relatively stable, and wall impact stages. The wall impact stage could be separated into 4 generation phases of wall impinge, run-up, overturning, and touchdown phases based on the deformation of the free surface. The free surface elevation were investigated with various initial water depth and compared with the analytic solutions by Ritter (1892). The pressures acting on the vertical wall and bottom were provided for the whole period of dam break flow varying the initial water depth and gate open speed. The measurement results of the dam break flow was compared with the hydrodynamic characteristics of green water phenomena, and it showed that the dam break flow could overestimate the green water loading based on the estimation suggested by Buchner (2002).

Propagation of Tsunamis Generated by Seabed Motion with Time-History and Spatial-Distribution: An Analytical Approach (시간이력 및 공간분포를 지닌 지반운동에 의한 지진해일 발생 및 전파: 해석적 접근)

  • Jung, Taehwa;Son, Sangyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.263-269
    • /
    • 2018
  • Changes in water depth caused by underwater earthquakes and landslides cause sea surface undulations, which in turn propagate to the coast and result in significant damage as wave heights normally increase due to the wave shoaling process. Various types of numerical models have been developed to simulate the generation and propagation of tsunami waves. Most of tsunami models determine the initial surface of the water based on the assumption that the movement of the seabed is immediately and identically transmitted to the sea surface. However, this approach does not take into account the characteristics of underwater earthquakes that occur with time history and spatial variation. Thus, such an incomplete description on the initial generation of tsunami waves is totally reflected in the error during the simulation. In this study, the analytical solution proposed by Hammack (1973) was applied in the tsunami model in order to simulate the generation of initial water surface elevation by the change of water depth with time history and its propagation. The developed solution is expected to identify the relationship among various type of seabed motions, initial surface undulations, and wave speeds of elevated water surfaces.

Comparative Study on the Accuracy of Surface Air Temperature Prediction based on selection of land use and initial meteorological data (토지이용도와 초기 기상 입력 자료의 선택에 따른 지상 기온 예측 정확도 비교 연구)

  • Hae-Dong Kim;Ha-Young Kim
    • Journal of Environmental Science International
    • /
    • v.33 no.6
    • /
    • pp.435-442
    • /
    • 2024
  • We investigated the accuracy of surface air temperature prediction according to the selection of land-use data and initial meteorological data using the Weather Research and Forecasting model-v4.2.1. A numerical experiment was conducted at the Daegu Dyeing Industrial Complex. We initially used meteorological input data from GFS (Global forecast system)and GDAPS (Global data assimilation and prediction system). High-resolution input data were generated and used as input data for the weather model using the land cover data of the Ministry of Environment and the digital elevation model of the Ministry of Land, Infrastructure, and Transport. The experiment was conducted by classifying the terrestrial and topographic data (land cover data) and meteorological data applied to the model. For simulations using high-resolution terrestrial data(10 m), global data assimilation, and prediction system data(CASE 3), the calculated surface temperature was much closer to the automatic weather station observations than for simulations using low-resolution terrestrial data(900 m) and GFS(CASE 1).

Survival analysis of implants placed in the sinus floor elevated maxilla (상악동저 거상술 후 상악 구치부에 식립된 임플란트의 생존율에 대한 연구)

  • Park, Jong-Yeon;Kim, Ok-Su;Ryoo, Gyeong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.2
    • /
    • pp.151-164
    • /
    • 2007
  • Objective: The sinus floor elevation procedures have been used to facilitate implant placement in the severely atrophic posterior maxilla. Many variables may have an influence on the outcomes of the sinus floor elevation in combination with implant treatment. The aim of this study was to analyze survival rate of implants placed in the edentulous maxillae of patients in whom sinus floor elevation was undertaken according to variables. Materials and Methods: It consisted of 96 patients(50 male and 46 female), ranging in age from 31 to 70 years(mean 49 years), who underwent sinus floor elevation procedure(94 implants in left side and 106 implants in right side) from 2001 to 2002. A total of 200 implants were placed in the grafted sinus(73 implants in lateral approach and 127 implants in crestal approach). All implants were restored by fixed prosthesis. All patients were healthy. Follow-up periods for implants were between 48 to 60 months. Results: The cumulative survival rate of implants was 91.5%. Gender, age and operation site did not have an influence on the survival rate. There was statistically significant differences for the implants which placed in less than 4 or 5 rom residual bone height, the survival rate was 60%, 81.4% respectively (p<0.05). There was no statistically significant difference of implants survival rate ac- cording to approach technique. The survival rate for 100% autogenous bone grafts was lower with respect to composite grafts containing autogenous bone and 100% substitutes. The survival rate for hydroxyapatite-coated implants was statistically significant lower than other textured group (p<0.05). Conclusion: Residual bone height, surface texture and graft materials have an influence on the survival rate. To use autogenous bone as a part of a composite bone replacement, implant texture which leads to more favorable implant-bone interface were necessary. To determine residual bone height for initial implant stability was important.

Electron Microscopic Obsenrations on Micropvle after Sperm Penetration in Rainbow Trout, Oncorhynchus mykiss (정자 침입전후 무지개 송어의 난문에 대한 미세구조적 변화)

  • 윤종만;정구용
    • The Korean Journal of Zoology
    • /
    • v.39 no.2
    • /
    • pp.173-181
    • /
    • 1996
  • The time-course process by which spermatozoa penetrates through the micropvle apparatus into the egg cytoplasm of rainbow trout, Oncorhvnchus mvkiss, was examined with transmission and scanning electron microscopy. In the unfertilized egg, the ess surface beneath the inner opening of the micropylar canal did not differ distinctly from the rest of the animal pole area. A spermatozoon attached to the micropvle opening 20 seconds after insemination. In the initial stases of penetration, the spermatozoon still within the micropvlar canal attached perpendicularly at its apical tip to the ess surface, then the sperm head was rapidly engulfed by the folded egg surface with its manly microvilli. A large fertilization cone with microvillus-free surface appeared on the esS surface sutra-rounding the penetrating spermatozoon. The head portion of the penetrating spermatozoon was completely wrapped by the ess surface with only the tail portion visible externally 30 seconds after insemination. The fertilization cone displayed the tail portion of the penetrating spermatozoon on the central portion of its surface 60 seconds after insemination. 150 seconds after insemination, breakdown of the cortical granules elevation were initiated at the animal pole, then completed at the vegetable pole area. The spermatozoon disappeared from the outer surface of the ess before the fertilization cone completely retracted 250 seconds after insemination. In result, the block to polvspermv to permit entry of a sin81e sperm is considered to be mechanical by the rnorpholoSical design of the micropvle and fertilization cone.

  • PDF

NUMERICAL SIMULATION OF TWO-DIMENSIONAL FREE-SURFACE FLOW AND WAVE TRANSFORMATION OVER CONSTANT-SLOPE BOTTOM TOPOGRAPHY

  • DIMAKOPOULOS AGGELOS S;DIMAS ATHANASSIOS A
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.09b
    • /
    • pp.842-845
    • /
    • 2005
  • A method for the numerical simulation of two-dimensional free-surface flow resulting from the propagation of regular gravity waves over topography with arbitrary bottom shape is presented. The method is based on the numerical solution of the Euler equations subject to the fully nonlinear free-surface boundary conditions and the appropriate bottom, inflow and outflow conditions using a hybrid finite-differences and spectral-method scheme. The formulation includes a boundary-fitted transformation, and is suitable for extension to incorporate large-eddy simulation (LES) and large-wave simulation (LWS) terms for turbulence and breaking wave modeling, respectively. Results are presented for the simulation of the free-surface flow over two different bottom topographies, with constant slope values of 1:10 and 1:20, two different inflow wave lengths and two different inflow wave heights. An absorption outflow zone is utilized and the results indicate minimum wave reflection from the outflow boundary. Over the bottom slope, lengths of waves in the linear regime are modified according to linear theory dispersion, while wave heights remain more or less unchanged. For waves in the nonlinear regime, wave lengths are becoming shorter, while the free surface elevation deviates from its initial sinusoidal shape.

  • PDF

Study of evaluation wind resource detailed area with complex terrain using combined MM5/CALMET system (고해상도 바람지도 구축 시스템에 관한 연구)

  • Lee, Hwa-Woon;Kim, Dong-Hyeuk;Kim, Min-Jung;Lee, Soon-Hwan;Park, Soon-Young;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.274-277
    • /
    • 2008
  • To evaluate high-resolution wind resources for local and coastal area with complex terrain was attemped to combine the prognostic MM5 mesoscale model with CALMET diagnostic modeling this study. Firstly, MM5 was simulated for 1km resolution, nested fine domain, with FDDA using QuikSCAT seawinds data was employed to improve initial meteorological fields. Wind field and other meteorological variables from MM5 with all vertical levels used as initial guess field for CALMET. And 5 surface and 1 radio sonde observation data is performed objective analysis whole domain cells. Initial and boundary condition are given by 3 hourly RDAPS data of KMA in prognostic MM5 simulation. Geophysical data was used high-resolution terrain elevation and land cover(30 seconds) data from USGS with MM5 simulation. On the other hand SRTM 90m resolution and EGIS 30m landuse was adopted for CALMET diagnostic simulation. The simulation was performed on whole year for 2007. Vertical wind field a hour from CALMET and latest results of MM5 simulation was comparison with wind profiler(KEOP-2007 campaign) data at HAENAM site.

  • PDF

A Study of Rewetting Temperature in Cooling of Hot Surfaces (高溫表面의 冷却時 再水着 溫度 에 관한 硏究)

  • 정문기;이영환;박종석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.463-470
    • /
    • 1985
  • In this study a parametric analysis for the rewetting temperature was made with 572 data obtained from the single tube experiment. The rewetting temperature was also evaluated by measuring the vaporization time of a liquid drop on a hot surface at the elevated pressures. The results showed that the rewetting temperature increased with flooding rate, inlet subcooling pressure and initial wall temperature, and decreased with increasing axial elevation. Based on the results obtained, the rewetting temperature correlation was suggested. From the comparison of correlated rewetting temperatures with measured values, it showed that the correlated values fell within .+-.5% error from the measured values.