• 제목/요약/키워드: initial stressed

검색결과 82건 처리시간 0.026초

A study on thermo-mechanical behavior of MCD through bulge test analysis

  • Altabey, Wael A.
    • Advances in Computational Design
    • /
    • 제2권2호
    • /
    • pp.107-119
    • /
    • 2017
  • The Micro circular diaphragm (MCD) is the mechanical actuator part used in the micro electro-mechanical sensors (MEMS) that combine electrical and mechanical components. These actuators are working under harsh mechanical and thermal conditions, so it is very important to study the mechanical and thermal behaviors of these actuators, in order to do with its function successfully. The objective of this paper is to determine the thermo-mechanical behavior of MCD by developing the traditional bulge test technique to achieve the aims of this work. The specimen is first pre-stressed to ensure that is no initial deflection before applied the loads on diaphragm and then clamped between two plates, a differential pressure (P) and temperature ($T_b$) is leading to a deformation of the MCD. Analytical formulation of developed bulge test technique for MCD thermo-mechanical characterization was established with taking in-to account effect of the residual strength from pre-stressed loading. These makes the plane-strain bulge test ideal for studying the mechanical and thermal behavior of diaphragm in both the elastic and plastic regimes. The differential specimen thickness due to bulge effect to describe the mechanical behavior, and the temperature effect on the MCD material properties to study the thermal behavior under deformation were discussed. A finite element model (FEM) can be extended to apply for investigating the reliability of the proposed bulge test of MCD and compare between the FEM results and another one from analytical calculus. The results show that, the good convergence between the finite element model and analytical model.

An exact solution for mechanical behavior of BFRP Nano-thin films embedded in NEMS

  • Altabey, Wael A.
    • Advances in nano research
    • /
    • 제5권4호
    • /
    • pp.337-357
    • /
    • 2017
  • Knowledge of thin films mechanical properties is strongly associated to the reliability and the performances of Nano Electro Mechanical Systems (NEMS). In the literature, there are several methods for micro materials characterization. Bulge test is an established nondestructive technique for studying the mechanical properties of thin films. This study improve the performances of NEMS by investigating the mechanical behavior of Nano rectangular thin film (NRTF) made of new material embedded in Nano Electro Mechanical Systems (NEMS) by developing the bulge test technique. The NRTF built from adhesively-bonded layers of basalt fiber reinforced polymer (BFRP) laminate composite materials in Nano size at room temperature and were used for plane-strain bulging. The NRTF is first pre-stressed to ensure that is no initial deflection before applied the loads on NRTF and then clamped between two plates. A differential pressure is applying to a deformation of the laminated composite NRTF. This makes the plane-strain bulge test idea for studying the mechanical behavior of laminated composite NRTF in both the elastic and plastic regimes. An exact solution of governing equations for symmetric cross-ply BFRP laminated composite NRTF was established with taking in-to account the effect of the residual strength from pre-stressed loading. The stress-strain relationship of the BFRP laminated composite NRTF was determined by hydraulic bulging test. The NRTF thickness gradation in different points of hemisphere formed in bulge test was analysed.

벼의 리올러지 특성(特性)(I) -곡립(穀粒)의 응력이완(應力弛緩)- (Rheological Properties of Rough Rice(I) -Stress Relaxation of Rough Rice Kernel-)

  • 김만수;김성래;박종민
    • Journal of Biosystems Engineering
    • /
    • 제15권3호
    • /
    • pp.207-218
    • /
    • 1990
  • Grains display characteristics of both elastic bodies and viscous fluids when they are subjected to mechanical treatments in harvesting, handling, and processing. This viscoelastic behavior of grains when mechanically stressed must be fully understood to establish maximum machine efficiency and have a minimum degree of grain damage and the highest quality of the final product. The studies were conducted to examine the effect of the moisture content, the loading rate and the initial deformation on the stress relaxation behavior of whole kernel of rough rice, and develop the rheological model to represent its stress relaxation behavior. The following results were obtained from the study. 1. Moisture content had the greatest influence on the initial portion of the relaxation curve. With elapsing time the lower moisture content resulted in the lower residual stress for the Japonica-type rough rice and vice versa for the Indica-type rough rice. But within the ranges of moisture content tested, the degree of stress relaxation per unit strain on the Indica-type rough rice was a little higher than those on the Japonica-type rough rice. 2. The slower loading rate resulted in less initial stress. The decreasing trend of residual stress for all the samples tested with increasing loading rate was shown. 3. The higher initial deformation for all the samples resulted in less initial stress. The increasing of amount of stress relaxation per unit strain with increase of initial stress indicated that viscoelastic properties of rough rice depended not only upon duration of load applied but also initial stress applied. This means that rough rice is nonlinear viscoelastic material. 4. The compression stress relaxation properties of rough rice kernel can be described by a generalized Maxwell model representing by the Maxwell elements.

  • PDF

Influence of initial stresses on the critical velocity of the moving load acting in the interior of the hollow cylinder surrounded by an infinite elastic medium

  • Akbarov, Surkay D.;Mehdiyev, Mahir A.
    • Structural Engineering and Mechanics
    • /
    • 제66권1호
    • /
    • pp.45-59
    • /
    • 2018
  • The bi-material elastic system consisting of the pre-stressed hollow cylinder and pre-stresses surrounding infinite elastic medium is considered and it is assumed that the mentioned initial stresses in this system are caused with the compressing or stretching uniformly distributed normal forces acting at infinity in the direction which is parallel to the cylinder's axis. Moreover, it is assumed that on the internal surface of the cylinder the ring load which moves with constant velocity acts and within these frameworks it is required to determine the influence of the aforementioned initial stresses on the critical velocity of the moving load. The corresponding investigations are carried out within the framework of the so-called three-dimensional linearized theory of elastic waves in initially stresses bodies and the axisymmetric stress-strain state case is considered. The "moving coordinate system" method is used and the Fourier transform is employed for solution to the formulated mathematical problem and Fourier transformation of the sought values are determined analytically. However, the originals of those are determined numerically with the use of the Sommerfeld contour method. The critical velocity is determined from the criterion, according to which, the magnitudes of the absolute values of the stresses and displacements caused with the moving load approaches an infinity. Numerical results on the influence of the initial stresses on the critical velocity and interface normal and shear stresses are presented and discussed. In particular, it is established that the initial stretching (compressing) of the constituents of the system under consideration causes a decrease (an increase) in the values of the critical velocity.

긴장을 가한 보강 플레이트로 보강된 RC 보의 휨보강 효과 (Flexural Strengthening Effects of RC Beam Reinforced with Pre-stressing Plate)

  • 하상수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권1호
    • /
    • pp.171-178
    • /
    • 2019
  • 본 연구는 탄소섬유시트, 아라미드섬유시트, 그리고 유리섬유시트를 혼합한 하이브리드 FRP 플레이트를 제작하였으며, 제작한 보강 플레이트를 보강한 후, 최대한의 휨 보강 효과가 발생되도록 다시 보강 플레이를 긴장시켜 RC보의 휨 보강 효과를 파악하고자 하였다. 또한, 긴장시키는 보강방법을 제시하는 동시에 무보강 실험체에 비해 보강효과가 어느 정도 되는지 실험적으로 규명하기 위해 실험적 연구를 진행하였다. 연구를 위해 총 8개의 RC 보 부재를 동일하게 제작하여 1 개의 실험체(N 실험체)를 제외한 7 개의 실험체는 보강재 종류, 단부 정착 앵커 개수, 보강재 두께 등을 주요 변수로 하여 실험을 실시하였다. 실험결과, 휨 거동을 보이는 실험체에 긴장을 가한 FRP 플레이트로 보강하면, 보강하지 않은 실험체에 비해 우수한 휨거동(초기강도, 항복시 강도 및 강성, 최대강도 등)보여 주었으며, 단부정착 앵커의 개수가 많고, 보강재의 두께(보강량)가 클수록 보강효과가 우수한 것으로 나타났으며, 긴장시킨 보강재는 단일 FRP 플레이트에 비해, 하이브리드 FRP 플레이트를 적용했을 때 보강효과가 더 우수하게 나타났다.

EM시험에서의 Joule Heating 영향 및 초기저항값 (Joule Heating Effects and Initial Resistance in Electromigration Test)

  • 주철원;강형곤;한병성
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권6호
    • /
    • pp.436-441
    • /
    • 1999
  • Joule heating effect in EM(Electromigration) test were performed on a bend test structure. EM test is done under high current densities(1.0-2.5MA/cm2), which leads to joule heating. Since joule heating is added to the controlled oven(stress) temperature, themetal line temperature is higher than the stress temperature. The increase in the stress temperature due to joule heating is important because EM phenomena and metal line failure are related to the stress temperature. In this paper, metal line was stressed with a current density of 1.0 MA/$cm^2$, 1.5MA/$cm^2$, 2.0MA/$cm^2$, 2.5MA/$cm^2$, for 1200 sec and temperature increase due to joule heating was less than $10^{\circ}C$. Also it took 30 minutes for the metal line to equalized with oven temperature. Recommendations are given for the EM test to determine the initial resistance of EM test structure under stress temperature and current density.

  • PDF

Seismic analysis of steel structure with brace configuration using topology optimization

  • Qiao, Shengfang;Han, Xiaolei;Zhou, Kemin;Ji, Jing
    • Steel and Composite Structures
    • /
    • 제21권3호
    • /
    • pp.501-515
    • /
    • 2016
  • Seismic analysis for steel frame structure with brace configuration using topology optimization based on truss-like material model is studied. The initial design domain for topology optimization is determined according to original steel frame structure and filled with truss-like members. Hence the initial truss-like continuum is established. The densities and orientation of truss-like members at any point are taken as design variables in finite element analysis. The topology optimization problem of least-weight truss-like continuum with stress constraints is solved. The orientations and densities of members in truss-like continuum are optimized and updated by fully-stressed criterion in every iteration. The optimized truss-like continuum is founded after finite element analysis is finished. The optimal bracing system is established based on optimized truss-like continuum without numerical instability. Seismic performance for steel frame structures is derived using dynamic time-history analysis. A numerical example shows the advantage for frame structures with brace configuration using topology optimization in seismic performance.

Propagation of plane waves in an orthotropic magneto-thermodiffusive rotating half-space

  • Sheokand, Suresh Kumar;Kumar, Rajeshm;Kalkal, Kapil Kumar;Deswal, Sunita
    • Structural Engineering and Mechanics
    • /
    • 제72권4호
    • /
    • pp.455-468
    • /
    • 2019
  • The present article is aimed at studying the reflection phenomena of plane waves in a homogeneous, orthotropic, initially stressed magneto-thermoelastic rotating medium with diffusion. The enuciation is applied to generalized thermoelasticity based on Lord-Shulman theory. There exist four coupled waves, namely, quasi-longitudinal P-wave (qP), quasi-longitudinal thermal wave (qT), quasi-longitudinal mass diffusive wave (qMD) and quasi-transverse wave (qSV) in the medium. The amplitude and energy ratios for these reflected waves are derived and the numerical computations have been carried out with the help of MATLAB programming. The effects of rotation, initial stress, magnetic and diffusion parameters on the amplitude ratios are depicted graphically. The expressions of energy ratios have also been obtained in explicit form and are shown graphically as functions of angle of incidence. It has been verified that during reflection phenomena, the sum of energy ratios is equal to unity at each angle of incidence. Effect of anisotropy is also depicted on velocities of various reflected waves.

Influence of loose bonding, initial stress and reinforcement on Love-type wave propagating in a functionally graded piezoelectric composite structure

  • Singh, Abhishek K.;Parween, Zeenat;Chaki, Mriganka S.;Mahto, Shruti
    • Smart Structures and Systems
    • /
    • 제22권3호
    • /
    • pp.341-358
    • /
    • 2018
  • This present study investigates Love-type wave propagation in composite structure consists of a loosely bonded functionally graded piezoelectric material (FGPM) stratum lying over a functionally graded initially-stressed fibre-reinforced material (FGIFM) substrate. The closed-form expressions of the dispersion relation have been obtained analytically for both the cases of electrically open and electrically short conditions. Some special cases of the problem have also been studied and the obtained results are found in well-agreement with the classical Love wave equation. The emphatic influence of wave number, bonding parameter associated with bonding of stratum with substrate of the composite structure, piezoelectric coefficient as well as dielectric constant of the piezoelectric stratum, horizontal initial stresses, and functional gradedness of the composite structure on the phase velocity of Love-type wave has been reported and illustrated through numerical computation along with graphical demonstration in both the cases of electrically open and electrically short condition for the reinforced and reinforced-free composite structure. Comparative study has been carried out to analyze the distinct cases associated with functional gradedness of the composite structure and also various cases which reveals the influence of piezoelectricity, reinforcement and horizontal initial stress acting in the composite structure, and bonding of the stratum and substrate of the composite structure in context of the present problem which serves as one of the major highlights of the study.

An Improved Element Removal Method for Evolutionary Structural Optimization

  • Han, Seog-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제14권9호
    • /
    • pp.913-919
    • /
    • 2000
  • The purpose of this study was to develop a new element removal method for ESO (Evolutionary Structural Optimization), which is one of the topology optimization methods. ESO starts with the maximum allowable design space and the optimal topology emerges by a process of removal of lowly stressed elements. The element removal ratio of ESO is fixed throughout topology optimization at 1 or 2%. BESO (bidirectional ESO) starts with either the least number of elements connecting the loads to the supports, or an initial design domain that fits within the maximum allowable domain, and the optimal topology evolves by adding or subtracting elements. But the convergence rate of BESO is also very slow. In this paper, a new element removal method for ESO was developed for improvement of the convergence rate. Then it was applied to the same problems as those in papers published previously. From the results, it was verified that the convergence rate was significantly improved compared with ESO as well as BESO.

  • PDF