• Title/Summary/Keyword: initial pressure

Search Result 1,916, Processing Time 0.025 seconds

Prediction of Biodiesel Combustion, CO and NOX Emission Characteristics in Accordance with Equivalence Ratio (당량비 변화에 따른 바이오디젤 연소 및 CO, NOX 생성 특성 예측)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • This study was performed to provide the basic information of the combustion, CO and $NO_X$ characteristics of biodiesel in accordance with equivalence ratio. The closed homogeneous reactor model used for the analysis. The analysis conditions were set to 900 K of the initial temperature, 20 atm of initial pressure and equivalence ratio was changes from 0.6 to 1.4. The results of analysis were predicted and compared in terms of combustion temperature, combustion pressure, CO and $NO_X$ emissions. The results of combustion characteristics showed that ignition delay was decreased and the combustion temperature and combustion pressure was increased in accordance with equivalence ratio. CO emission was decreased in lean condition(${\Phi}$ < 1.0), however, CO emission was increased in rich condition(${\Phi}$ > 1.0) because oxygen supply insufficient. $NO_X$ emission showed the largest amount in condition 0.8 of equivalence ratio because the oxygen concentration was sufficient.

Delayed Operation Characteristics of Power Shuttle According to Hydraulic Oil Temperature in the Hydraulic Circuit of Agricultural Tractor

  • Park, Yoon-Na;Kim, Dae-Cheol;Park, Seung-Je
    • Journal of Biosystems Engineering
    • /
    • v.40 no.2
    • /
    • pp.95-101
    • /
    • 2015
  • Purpose: During the start-up period, the response time of a hydraulic system increases in the winter because of the increased oil viscosity caused by the cold weather. The problems of delayed tractor starting and excessive wear of the clutch disk occur for these reasons. Therefore, this study develops an analysis model using the commercial hydraulic analysis program AMESim to examine the characteristics of delays in power shuttle starting at different oil temperatures. Methods: In the experiment, a tractor was stationary on a flat surface with the engine running at a constant speed of 1,080 rpm. The forward lever was then pressed to activate the power shuttle at three different oil temperatures, and the pressure changes were measured. The pressure on the forward clutch control valve was measured by a pressure gauge installed on the hydraulic line supplied to the transmission from the main valve. An analysis model was also developed and verified with actual tests. Results: The trend of the simulated pressures of the power shuttle is similar to that of the measured pressures, and a constant modulation period was observed in both the simulation and test results. However, the difference found between the simulation and test results was the initial pressure required to overcome the initial force of the clutch spring. Conclusions: This study also examines the characteristics of the delayed startup of the power shuttle at different oil temperatures through simulations.

Thermally-induced Mechanical Behavior of the Press-fitted Cylindrical Structure (죄임새 결합된 원통구조물의 열전도에 의한 기계적 특성변화)

  • 김선민;이선규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.139-148
    • /
    • 1998
  • Internal and external heat sources will cause to deform to machine elements in the contact joint of structure, which results in the change of contact pressure distribution different from initial assembly. Heat induced variations of contact pressure will change the static and dynamic properties such as contact stiffness, damping as well as contact heat conduction in the structure In order to design and control the intelligent machine tool operating in variant conditions more sophisticatedly, the good prediction for the changes of prescribed properties are strongly required especially in the contact elements adjacent to the rotational or linear bearing. This paper presents some computational and experimental results in regard to static and dynamic characteristics of the press-fitted bush and shaft assembly which is a model of the bearing innerrace and shaft assembly. In the condition of heat generation on the outer surface of the bush, the effects of changes in the negative clearance and the heat flux on pressure distribution and dynamic properties are investigated. Results of this study show that the edge effect of the bush and the initial clearance have effects on the transient dynamic characteristics significantly.

  • PDF

Effect of High Hydrostatic Pressure on the Quality of Chinese Cabbage Kimchi (초고압 처리가 배추김치의 품질특성에 미치는 영향)

  • Kim, Dong-Won;Park, Seok-Jun;Park, Ji-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.545-550
    • /
    • 2001
  • Effects of high hydrostatic pressure on pH, titratable acidity, color, hardness and microorganisms of Chinese Cabbage Kimchi were investigated. Kimchi was pressurized at $200{\sim}600$ MPa for 5 min. There were no significant differences in color and hardness between control and pressurized Kimchi (p>0.05). Total aerobes and lactic acid bacteria were effectively inactivated by high hydrostatic pressure above 400 MPa. Changes in pH, titratable acidity, color, hardness and microbial counts for 4 weeks storage of Kimchi were investigated Kimchi was pressurized at 400 MPa for 5 min and stored at $4^{\circ}C$. The pH of control decreased to 3.94 but pressurized Kimchi maintained its initial pH value throughout the storage. The color of control showed significantly low values compared with pressureized Kimchi (p<0.05), but hardness was not significantly changed (p>0.05). Total aerobes and lactic acid bacteria in the control were reduced from the initial value of $10^8{\sim}10^9$ CFU/mL to $10^6$CFU/mL after 4 weeks storage. Whereas microbial counts in pressurized Kimchi was maintained about $10^3{\sim}10^4$ CFU/mL during storage.

  • PDF

Transient Critical Heat Flux Under Flow Coastdown in a Vertical Annulus With Non-Uniform Heat Flux Distribution

  • Moon, Sang-Ki;Chun, Se-Young;Park, Ki-Yong;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.382-395
    • /
    • 2002
  • An experimental study on transient critical heat flux (CHF) under flow coastdown has been performed for the water flow in a non-uniformly heated vertical annulus under low flow and a wide range of pressure conditions. The objectives of this study are to systematically investigate the effect of the flow transient on the CHF and to compare the transient CHF with steady-state CHF The transient CHF experiments have been performed for three kinds of flow transient modes based on the coastdown data of a nuclear power plant reactor coolant pump. At the same inlet subcooling, system pressure and heat flux, the effect of the initial mass flux on the critical mass flux can be negligible. However, the effect of the initial mass flux on the time-to- CHF becomes large as the heat flux decreases. The critical mass flux has the largest value for slow flow reduction rate. There is a pressure effect on the ratio of the transient CHF data to steady-state CHF data. Except under low system pressure conditions, the flow transient CHF was revealed to be conservative compared with the steady-state CHF data. Bowling CHF correlation and thermal hydraulic system code MARS show promising results for the prediction of CHF occurrence .

Numerical vibration correlation technique analyses for composite cylinder under compression and internal pressure

  • Do-Young Kim;Chang-Hoon Sim;Jae-Sang Park;Joon-Tae Yoo;Young-Ha Yoon;Keejoo Lee
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.419-429
    • /
    • 2023
  • This study conducts numerical analyses of a thin-walled composite cylinder under axial compression and internal pressure of 10 kPa. Numerical vibration correlation technique and nonlinear postbuckling analyses are conducted using the nonlinear finite element analysis program, ABAQUS. The single perturbation load approach and measured imperfection data are used to represent the geometric initial imperfection of thin-walled composite cylinder. The buckling knockdown factors are derived using present initial imperfection and analysis methods under axial compression without and with the internal pressure. Furthermore, the buckling knockdown factors are compared with the buckling test and computation time are calculated. In this study, derived buckling knockdown factors in present study have difference within 10% as compared with the buckling test. It is shown that nonlinear postbuckling analysis can derive relatively accurate buckling knockdown factor of present thin-walled cylinders, however, numerical vibration correlation technique derives reasonable buckling knockdown factors compared with buckling test. Therefore, this study shows that numerical vibration correlation technique can also be considered as an effective numerical method with 21~91% reduced computation time than nonlinear postbuckling analysis for the derivation of buckling knockdown factors of present composite cylinders.

The Experimental Study of Water Hammer by Valve Closure in Water Supply Piping System (단순 급수관로에서의 워터 햄머 현상에 관한 연구)

  • 이용화;유지오;박효석;김영호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.7
    • /
    • pp.697-702
    • /
    • 2000
  • This study is to investigate the pressure wave characteristics and the maximum pressure rise generated by instantaneous valve closure at the end of the straightening copper piping system. Experiments were conducted under the following conditions : initial pressure 1~5 bar, flow velocity 0.6~3.0 m/s and water temperature $20^{\circ}C$ . Results indicated that the peak pressure generated by quick valve closure reached Joukowsky's value. And we also found that the maximum pressure rise and the pressure history were depended on not only closing time but also flow velocity.

  • PDF

A Numerical Analysis on a Dependence of Hydrogen Diaphragm Compressor Performance on Hydraulic Oil Conditions (오일부 운전조건 변화에 따른 수소용 다이어프램 압축기의 성능예측에 대한 수치해석)

  • Park, Hyun-Woo;Shin, Young-Il;Lee, Young-Jun;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.471-478
    • /
    • 2009
  • The specific some types of compressors are appropriate for a use in hydrogen gas station. Metal diaphragm type of hydrogen compressor is one of them, which can satisfy the critical requirements of maintaining gas purity and producing high pressure over 850 bar. The objective of this study is to investigate an characteristics of compression through two-way Fluid-Structure-Interaction (FSI) analysis as bulk modulus and initial volume of oil independently varies. Deflection of diaphragm, oil density, gas and oil pressure were analyzed during a certain period of compression process. According to the analysis results, bulk modulus and initial volume remarkably affected deflection of diaphragm, oil density, gas and oil pressure. The highest gas pressure were attained with the highest bulk modulus of $7e^9\;N/m^2$ and the lowest initial oil volume of 80 cc.

Experimental Study of Micro-Shock Tube Flow (Micro-Shock Tube 유동에 대한 실험적 연구)

  • Park, Jin-Ouk;Kim, Gyu-Wan;Rasel, Md. Alim Iftakhar;Kim, Heuy-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.385-390
    • /
    • 2015
  • The flow characteristics in micro shock tube are investigated experimentally. Studies were carried out using a stainless steel micro shock tube. Shock and expansion wave was measured using 8 pressure sensors. The initial pressure ratio was varied from 4.3 to 30.5, and the diameter of tube was also changed from 3mm to 6mm. Diaphragm conditions were varied using two types of diaphragms. The results obtained show that the shock strength in the tube becomes stronger for an increase in the initial pressure ratio and diameter of tube. For the thinner diaphragm, the highest shock strength was found among varied diaphragm condition. Shock attenuation was highly influenced by the diameter of tube.

The effects of activated cooler power on the transient pressure decay and helium mixing in the PANDA facility

  • Kapulla, R.;Paranjape, S.;Fehlmann, M.;Suter, S.;Doll, U.;Paladino, D.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2311-2320
    • /
    • 2022
  • The main outcomes of the experiments H2P6 performed in the thermal-hydraulics large-scale PANDA facility at PSI in the frame of the OECD/NEA HYMERES-2 project are presented in this article. The experiments of the H2P6 series consists of two PANDA tests characterized by the activation of three (H2P6_1) or one (H2P6_2) cooler(s) in an initially stratified and pressurized containment atmosphere. The initial stratification is defined by a helium-rich region located in the upper part of the vessel and a steam/air atmosphere in the lower part. The activation of the cooler(s) results i) in the condensation of the steam in the vicinity of the cooler(s), ii) the corresponding activation of large scale natural circulation currents in the vessel atmosphere, with the result of iii) the re-distribution and mixing of the Helium stratification initially located in the upper half of the vessel and iv) the continuous pressure decay. The initial helium layer represents hydrogen generated in a postulated severe accident. The main question to be answered by the experiments is whether or not the interaction of the different, localized cooler units would be important for the application of numerical methods. The paper describes the initial and boundary conditions and the experimental results of the H2P6 series with the suggestion of simple scaling laws for both experiments in terms of i) the temperature difference(s) across the cooler(s), ii) the transient steam and helium content and iii) the pressure decay in the vessel. The outcomes of this scaling indicate that the interaction between separate, closely localized units does not play a prominent role for the present experiments. It is therefore reasonable to model several units as one large component with equivalent heat transfer area and total water flow rate.