• 제목/요약/키워드: initial geometrical imperfections

검색결과 17건 처리시간 0.021초

단층 래티스 돔의 단면산정에 있어서의 형상초기불완전의 영향 (Effects of geometrical initial imperfection in proportioning member sections of single layer reticulated dome)

  • 김종민;황보석;한상을;권택진
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2004년도 춘계 학술발표회 논문집 제1권1호(통권1호)
    • /
    • pp.83-88
    • /
    • 2004
  • First author proposed a proportioning method for member sections of a single layer reticulated dome subjected to uniform and non-uniform load without any geometrical initial imperfection, and discussed the validity and effectiveness of the method which was based on linear buckling stress and a knock down factor. However, buckling of a single layer reticulated dome is strongly affected by initial imperfection. It is well known that geometrical initial imperfections reduce the nonlinear buckling capacity of a single layer raticulated dome. Thus, structural engineers may be recommended to reflect the effects of geometrical initial imperfections in proportioning member sections. In this paper, firstly, the presented proportioning method by first author is applied to dome without consideration of any imperfections and the thickness and diameter of each member are determined. Secondly, the load bearing capacities of the proportioned domes are checked with the imperfection, by the inelastic buckling analysis.

  • PDF

Prediction on load carrying capacities of multi-storey door-type modular steel scaffolds

  • Yu, W.K.;Chung, K.F.
    • Steel and Composite Structures
    • /
    • 제4권6호
    • /
    • pp.471-487
    • /
    • 2004
  • Modular steel scaffolds are commonly used as supporting scaffolds in building construction, and traditionally, the load carrying capacities of these scaffolds are obtained from limited full-scale tests with little rational design. Structural failure of these scaffolds occurs from time to time due to inadequate design, poor installation and over-loads on sites. In general, multi-storey modular steel scaffolds are very slender structures which exhibit significant non-linear behaviour. Hence, secondary moments due to both $P-{\delta}$ and $P-{\Delta}$ effects should be properly accounted for in the non-linear analyses. Moreover, while the structural behaviour of these scaffolds is known to be very sensitive to the types and the magnitudes of restraints provided from attached members and supports, yet it is always difficult to quantify these restraints in either test or practical conditions. The problem is further complicated due to the presence of initial geometrical imperfections in the scaffolds, including both member out-of-straightness and storey out-of-plumbness, and hence, initial geometrical imperfections should be carefully incorporated. This paper presents an extensive numerical study on three different approaches in analyzing and designing multi-storey modular steel scaffolds, namely, a) Eigenmode Imperfection Approach, b) Notional Load Approach, and c) Critical Load Approach. It should be noted that the three approaches adopt different ways to allow for the non-linear behaviour of the scaffolds in the presence of initial geometrical imperfections. Moreover, their suitability and accuracy in predicting the structural behaviour of modular steel scaffolds are discussed and compared thoroughly. The study aims to develop a simplified and yet reliable design approach for safe prediction on the load carrying capacities of multi-storey modular steel scaffolds, so that engineers can ensure safe and effective use of these scaffolds in building construction.

Effects of initial imperfections on nonlinear behaviors of thin-walled members

  • Ohga, M.;Takaue, A.;Shigematsu, T.;Hara, T.
    • Structural Engineering and Mechanics
    • /
    • 제11권5호
    • /
    • pp.519-534
    • /
    • 2001
  • The effect of the initial imperfections on the nonlinear behaviors and ultimate strength of the thin-walled members subjected to the axial loads, obtained by the finite element stability analysis, are examined. As the initial imperfections, the bucking mode shapes of the members are adopted. The buckling mode shapes of the thin-walled members are obtained by the transfer matrix method. In the finite element stability analysis, isoparametric degenerated shell element is used, and the geometrical and material nonlinearity are considered based on the Green Lagrange strain definition and the Prandtl-Reuss stress-strain relation following the von Mises yield criterion. The U-, box- and I-section members subjected to the axial loads are adopted for numerical examples, and the effects of the initial imperfections on the nonlinear behaviors and ultimate strength of the members are examined.

Numerical study on the moment capacity of zed-section purlins under uplift loading

  • Zhu, Jue;Chen, Jian-Kang;Ren, Chong
    • Structural Engineering and Mechanics
    • /
    • 제49권2호
    • /
    • pp.147-161
    • /
    • 2014
  • In this paper a nonlinear finite element analysis model is established for cold-formed steel zed-section purlins subjected to uplift loading. In the model, the lateral and rotational restraints provided by the sheeting to the purlin are simplified as a lateral rigid restraint imposed at the upper flange-web junction and a rotational spring restraint applied at the mid of the upper flange where the sheeting is fixed. The analyses are performed by considering both geometrical and material nonlinearities. The influences of the rotational spring stiffness and initial geometrical imperfections on the uplift loading capacity of the purlin are investigated numerically. It is found that the rotational spring stiffness has significant influence on the purlin performance. However, the influence of the initial geometric imperfections on the purlin performance is found only in purlins of medium or long length with no or low rotational spring stiffness.

Nonlinear stability of the upper chords in half-through truss bridges

  • Wen, Qingjie;Yue, Zixiang;Liu, Zhijun
    • Steel and Composite Structures
    • /
    • 제36권3호
    • /
    • pp.307-319
    • /
    • 2020
  • The upper chords in half-through truss bridges are prone to buckling due to a lack of the upper transverse connections. Taking into account geometric and material nonlinearity, nonlinear finite-element analysis of a simple supported truss bridge was carried out to exhibit effects of different types of initial imperfections. A half-wave of initial imperfection was proved to be effective in the nonlinear buckling analysis. And a parameter analysis of initial imperfections was also conducted to reveal that the upper chords have the greatest impact on the buckling, followed by the bottom chords, vertical and diagonal web members. Yet initial imperfections of transverse beams have almost no effect on the buckling. Moreover, using influence surface method, the combinatorial effects of initial imperfections were compared to demonstrate that initial imperfections of the upper chords play a leading role. Furthermore, the equivalent effective length coefficients of the upper chord were derived to be 0.2~0.28 by different methods, which implies vertical and diagonal web members still provide effective constraints for the upper chord despite a lack of the upper transverse connections between the two upper chords. Therefore, the geometrical and material nonlinear finite-element method is effective in the buckling analysis due to its higher precision. Based on nonlinear analysis and installation deviations of members, initial imperfection of l/500 is recommended in the nonlinear analysis of half-through truss bridges without initial imperfection investigation.

Thermal post-buckling behavior of GPLRMF cylindrical shells with initial geometrical imperfection

  • Yi-Wen Zhang;Gui-Lin She;Lei-Lei Gan;Yin-Ping Li
    • Geomechanics and Engineering
    • /
    • 제32권6호
    • /
    • pp.615-625
    • /
    • 2023
  • Initial geometrical imperfection is an important factor affecting the structural characteristics of plate and shell structures. Studying the effect of geometrical imperfection on the structural characteristics of cylindrical shell is beneficial to explore the thermal post-buckling response characteristics of cylindrical shell. Therefore, we devote to investigating the thermal post-buckling behavior of graphene platelets reinforced mental foam (GPLRMF) cylindrical shells with geometrical imperfection. The properties of GPLRMF material with considering three types of graphene platelets (GPLs) distribution patterns are introduced firstly. Subsequently, based on Donnell nonlinear shell theory, the governing equations of cylindrical shell are derived according to Eulerian-Lagrange equations. Taking into account two different boundary conditions namely simply supported (S-S) and clamped supported (C-S), the Galerkin principle is used to solve the governing equations. Finally, the impact of initial geometrical imperfections, the GPLs distribution types, the porosity distribution types, the porosity coefficient as well as the GPLs mass fraction on the thermal post-buckling response of the cylindrical shells are analyzed.

Experiments on locally dented conical shells under axial compression

  • Ghazijahani, Tohid Ghanbari;Jiao, Hui;Holloway, Damien
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1355-1367
    • /
    • 2015
  • Steel conical shells have long been used in various parts of different structures. Sensitivity to the initial geometrical imperfection has been one of the most significant issues on the stability of these structures, which has made them highly vulnerable to the buckling. Most attention has been devoted to structures under normal fabrication related imperfections. Notwithstanding, the challenges of large local imperfections - presented herein as dent-shaped imperfections - have not been a focus yet for these structures. This study aims to provide experimental data on the effect of such imperfections on the buckling capacity of these shells under axial compression. The results show changes in the buckling mode and the capacity for such damaged thin specimens as is outlined in this paper, with an average overall capacity reduction of 11%.

Nonlinear primary resonance of functionally graded doubly curved shells under different boundary conditions

  • Jinpeng Song;Yujie He;Gui-Lin She
    • Steel and Composite Structures
    • /
    • 제50권2호
    • /
    • pp.149-158
    • /
    • 2024
  • Considering that different boundary conditions can have an important impact on structural vibration characteristics. In this paper, the nonlinear forced vibration behavior of functionally graded material (FGM) doubly curved shells with initial geometric imperfections under different boundary conditions is studied. Considering initial geometric imperfections and von Karman geometric nonlinearity, the nonlinear governing equations of FGM doubly curved shells are derived using Reissner's first order shear deformation (FOSD) theory. Three different boundary conditions of four edges simply supported (SSSS), four edges clamped (CCCC), clamped-clamped-simply-simply (CCSS) were studied, and a system of nonlinear ordinary differential equations was obtained with the help of Galerkin principle. The nonlinear forced vibration response of the FGM doubly curved shell is obtained by using the modified Lindstedt Poincare (MLP) method. The accuracy of this method was verified by comparing it with published literature. Finally, the effects of curvature ratio, power law index, void coefficient, prestress, and initial geometric imperfections on the resonance of FGM doubly curved shells under different boundary conditions are fully discussed. The relevant research results can provide certain guidance for the design and application of doubly curved shell.

Effect of the initial imperfection on the response of the stainless steel shell structures

  • Ali Ihsan Celik;Ozer Zeybek;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • 제50권6호
    • /
    • pp.705-720
    • /
    • 2024
  • Analyzing the collapse behavior of thin-walled steel structures holds significant importance in ensuring their safety and longevity. Geometric imperfections present on the surface of metal materials can diminish both the durability and mechanical integrity of steel shells. These imperfections, encompassing local geometric irregularities and deformations such as holes, cavities, notches, and cracks localized in specific regions of the shell surface, play a pivotal role in the assessment. They can induce stress concentration within the structure, thereby influencing its susceptibility to buckling. The intricate relationship between the buckling behavior of these structures and such imperfections is multifaceted, contingent upon a variety of factors. The buckling analysis of thin-walled steel shell structures, similar to other steel structures, commonly involves the determination of crucial material properties, including elastic modulus, shear modulus, tensile strength, and fracture toughness. An established method involves the emulation of distributed geometric imperfections, utilizing real test specimen data as a basis. This approach allows for the accurate representation and assessment of the diversity and distribution of imperfections encountered in real-world scenarios. Utilizing defect data obtained from actual test samples enhances the model's realism and applicability. The sizes and configurations of these defects are employed as inputs in the modeling process, aiding in the prediction of structural behavior. It's worth noting that there is a dearth of experimental studies addressing the influence of geometric defects on the buckling behavior of cylindrical steel shells. In this particular study, samples featuring geometric imperfections were subjected to experimental buckling tests. These same samples were also modeled using Finite Element Analysis (FEM), with results corroborating the experimental findings. Furthermore, the initial geometrical imperfections were measured using digital image correlation (DIC) techniques. In this way, the response of the test specimens can be estimated accurately by applying the initial imperfections to FE models. After validation of the test results with FEA, a numerical parametric study was conducted to develop more generalized design recommendations for the stainless-steel shell structures with the initial geometric imperfection. While the load-carrying capacity of samples with perfect surfaces was up to 140 kN, the load-carrying capacity of samples with 4 mm defects was around 130 kN. Likewise, while the load carrying capacity of samples with 10 mm defects was around 125 kN, the load carrying capacity of samples with 14 mm defects was measured around 120 kN.

Finite strip analysis of a box girder simulating the hull of a ship

  • Akhras, G.;Tremblay, J.P.;Graham, T.;Cheung, M.S.;Li, W.C.
    • Structural Engineering and Mechanics
    • /
    • 제15권2호
    • /
    • pp.225-238
    • /
    • 2003
  • In the present study, the finite strip analysis of a box girder to simulate a ship's hull model is carried out to investigate its inelastic post-buckling behavior and to predict its ultimate flexural strength. Residual stresses and initial geometrical imperfections are both considered in the combined material and geometrical nonlinear analysis. The von-Mises yield criterion and the Prandtl-Reuss flow theory of plasticity are applied in modeling the elasto-plastic behavior of material. The Newton-Raphson iterative process is also employed in the analysis to achieve convergence. The numerical results agree well with the experimental data. The effects of some material and geometrical parameters on the ultimate strength of the structure are also investigated.