• Title/Summary/Keyword: initial element

Search Result 1,684, Processing Time 0.026 seconds

The Determination of Initial Blank Shape by Using the One-Step FEM (One-Step FEM을 이용한 초기 블랭크 형상 결정에 관한 연구)

  • Jung, Dong-Won;Lee, Sang-Je
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.21-28
    • /
    • 1999
  • In this paper, a finite element method for the determination of initial blank shape in sheet metal forming process will be introduced. The initial blank shape is determined by the only one step from the final to the initial blank. The used finite element inverse method adopted Henky's deformation theory, Hill's anisotropic yield criterion and simplified boundary conditions. Based on this theory. a three-dimensional membrane finite element code was developed. The developed code will be applied to several sheet metal forming examples for the demonstration of its validity.

  • PDF

Non-linear Static Analysis and Determination of Initial Equilibrium States of Space Cable Nets (3차원 케이블망의 정적 비선형 해석 및 초기 평형상태의 결정)

  • 김문영;김남일
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.134-141
    • /
    • 1997
  • A geometrically non-linear finite element formulation of spatial cable networks is presented using three cable elements. Firstly, derivation procedures of tangent stiffness and mass matrices for the space truss element and the elastic catenary cable element, and the isoparametric cable element are summarized. The load incremental method based on Newton-Raphson iteration method and the dynamic relaxation method are presented in order to determine the initial static state of cable nets subjected to self-weights and support motions. Furthermore, static non-linear analysis of cable structures under additional live loads are performed based on the initial configuration. Challenging example problems are presented and discussed in order to demonstrate the feasibility of the present finite element method and investigate static non-linear behaviors of cable nets.

  • PDF

An Elastic Parabolic Cable Element for Initial Shaping Analysis of Cable-Stayed Bridges (사장교의 초기형상해석을 위한 탄성포물선 케이블요소)

  • Kyung, Yong-Soo;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • This study introduces an elastic parabolic cable element for initial shaping analysis of cable-stayed bridges. First, an elastic catenary cable theory is shortly summarized by deriving the compatibility condition and the tangent stiffness matrices of the elastic catenary cable element. Next, the force-deformation relations and the tangent stiffness matrices of the elastic parabolic cable elements are derived from the assumption that sag configuration under self-weights is small. In addition the equivalent cable tension is defined in the chord-wise direction. Finally, to confirm the accuracy of this element, initial shaping analysis of cable-stayed bridges under dead loads is executed using TCUD in which stay cables are modeled by an elastic parabolic cable and an elastic catenary cable element, respectively. Resultantly it turns that unstrained lengths of stay cables, the equivalent cable tensions, and maximum tensions by the parabolic cable element are nearly the same as those by the catenary cable elements.

Ultimate strength of initially deflected plate under longitudinal compression: Part I = An advanced empirical formulation

  • Kim, Do Kyun;Poh, Bee Yee;Lee, Jia Rong;Paik, Jeom Kee
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.247-259
    • /
    • 2018
  • In this study (Part I), an advanced empirical formulation was proposed to predict the ultimate strength of initially deflected steel plate subjected to longitudinal compression. An advanced empirical formulation was proposed by adopting Initial Deflection Index (IDI) concept for plate element which is a function of plate slenderness ratio (${\beta}$) and coefficient of initial deflection. In case of initial deflection, buckling mode shape, which is mostly assumed type in the ships and offshore industry, was adopted. For the numerical simulation by ANSYS nonlinear finite element method (NLFEM), with a total of seven hundred 700 plate scenarios, including the combination of one hundred (100) cases of plate slenderness ratios with seven (7) representative initial deflection coefficients, were selected based on obtained probability density distributions of plate element from collected commercial ships. The obtained empirical formulation showed good agreement ($R^2=0.99$) with numerical simulation results. The obtained outcome with proposed procedure will be very useful in predicting the ultimate strength performance of plate element subjected to longitudinal compression.

Determination of Initial Billet Size using The Artificial Neural Networks and The Finite Element Method for a Forged Product (신경망과 유한요소법을 이용한 단조품의 초기 소재 형상 결정)

  • 김동진;고대철;김병민;최재찬
    • Transactions of Materials Processing
    • /
    • v.4 no.3
    • /
    • pp.214-221
    • /
    • 1995
  • In the paper, we have proposed a new method to determine the initial billet for the forged products using a function approximation in the neural network. The architecture of neural network is a three-layer neural network and the back propagation algorithm is employed to train the network. By utilizing the ability of function approximation of a neural network, an optimal billet is determined by applying the nonlinear mathematical relationship between the aspect ratios in the initial billet and the final products. The amount of incomplete filling in the die is measured by the rigid-plastic finite element method. The neural network is trained with the initial billet aspect ratios and those of the unfilled volumes. After learning, the system is able to predict the filling regions which are exactly the same or slightly different to the results of finite element simulation. This new method is applied to find the optimal billet size for the plane strain rib-web product in cold forging. This would reduce the number of finite element simulation for determining the optimal billet size of forging product, further it is usefully adapted to physical modeling for the forging design.

  • PDF

A Back-Analysis of Tunnels in Multi-Layered Underground Structures (다층구조계내 터널 거동의 역해석)

  • 전병승;이상도;나경웅;김문겸
    • Tunnel and Underground Space
    • /
    • v.4 no.1
    • /
    • pp.17-23
    • /
    • 1994
  • This study consists of two procedures on back analysis and forward analysis which is a basic tool of the former. For a safe and economical construction of underground structures, it is required to identify the structural parameters and analyze the structural behavior as exactly as possible. In this paper, a boundary element method to analyze the behavior of multi-alyered underground structures is studied, in which body forces and initial stresses are considered. That is, each layer is discritized into subregions using infinite fundamental solutions, and terms of body forces and initial stresses are transformed into boundary integral where the applied direct integral method is used. And the system of equations containing body forces and initial stresses are considered. That is, each layer is discritized into subregions using infinite fundamental solutions, and terms of body forces and initial stresses are transformed into boundary integral where the applied direct integral method is used. And the system of equations containing body forces and initial stresses are composed, then the method to solve unknowns is used with applying compatibility and equilibrium conditions between interfaces. As well, the direct search method is applied in back analysis problems. By Powell's method as a technique to search unknown parameters, assuming displacements calculated from boundary element analysis as in-situ displacements, elastic moduli and initial stresses are presumed. As consequences of this study, the results of boundary element analysis of the behavior of multilayered structure considering body forces and initial stresses are agreed with those of finite element analysis. And results of back analysis of elastic moduli and initial stresses in each layers are agreed with exact values with a little difference. Therefore, it is known that this study can be efficiently applied for analyzing the behavior of underground structures including back analysis problems.

  • PDF

Determination of Initial Tension and Reference Length of Cables of Cable-Stayed Bridges (사장교의 케이블 초기장력 및 기준길이 결정에 관한 연구)

  • Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.137-146
    • /
    • 2005
  • This study presents the shape iteration method and the updated Lagrangian methods to calculate the initial tension and the reference length of cables of cable-stayed bridges. The girders and towers of cable-stayed bridge are modelled as 3-dimensional frame elements and the cable as nonlinear truss element or Ernst's cable element. Compared with the initial tensions of cables by finite element method in this study and by trial-and error method in practices, the tensions by the former are shown to be a little less than the those by the latter. The reference lengths of cables by Ernst's cable elements are almost consistent with those of cables by nonlinear truss elements. And the reference length of cables in this study are almost consistent with the arc length of beam with the same initial tension. Therefore the reference lengths of cables in cable-stayed bridges are shown to be obtained simply by the theory of beam with the initial tension calculated in this study.

A Study on Characteristics of Flux-offset-type Fault Current limiter according to Initial fault current

  • Jung, Byungik;Hwang, Junwon;Choi, Hyosang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.117-122
    • /
    • 2015
  • Our research team proposed a flux-offset type fault current limiter as a new limiter. The flux-offset type fault current limiter uses a fault current limit technology based on the flux offset principle of the primary and secondary windings of a transformer. Stable fault current limit characteristics were achieved through a preliminary study. However, it was discovered that the initial fault current was not limited. Therefore, in this paper, a high-speed interrupter and a superconducting element were separately applied to the secondary winding of the flux-offset type fault current limiter and the operating characteristics were comparatively analyzed. In the experiment, when the superconducting element was applied to the secondary winding of the transformer, the initial fault current was limited while the limitation in the operation time was further shortened.

A Study on the Shape Finding and Patterning Procedures for Membrane Structures (막구조의 초기형상 및 재단도 결정알고리즘에 관한 연구)

  • 한상을;이경수;이상주;유용주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.298-305
    • /
    • 1998
  • The purpose of this study is to propose the method of determining the initial fabric membrane structures surface and membrane patterning procedures. Tension structure, such as, fabric membrane structures and cable-net, is stabilized by their initial prestress and boundary condition. The process to find initial structural overall shape of tension structures produced by initial prestress called Shape Finding or Shape Analysis. One of the most important factor for the design of membrane structures is to search initial smooth surface, because unlike steel or concrete building elements which resist loads in bending, all tension structure forces are carried within the surface by membrane stress or cable tension. To obtain initial surface of fabric membrane element in large deformation analysis, the membrane element is idealized as cable using a technique with Force-density method. and that result is compared with well-known nonlinear numerical method, such as Newton-raphson method and Dynamic relaxation method. The shape resulting from Force-density method has been dealt with as the initial membrane shape and used patterning procedures.

  • PDF

Elastic porabolic element for initial shaping analysis of cable-stayed bridges (사장교의 초기형상해석을 위한 탄성포물선요소)

  • Kyung Yong-Soo;Kim Ho-Kyung;Kim Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.481-488
    • /
    • 2005
  • This study presents a elastic parabolic cable element for initial shaping analysis of cable structures. First, the compatibility condition and the tangent stiffness matrices of the elastic catenary cable element are shortly summarized. Next the force-deformation relations and the tangent stiffness matrices of the elastic parabolic cable elements are derived from the assumption that sag configuration under self-weights is small. To confirm the accuracy of this element, initial shaping analysis of cable-stayed bridges under dead loads is executed. Finally, the accuracy and the validity of the analysis-results are compared and analyzed through numerical examples.

  • PDF