• Title/Summary/Keyword: initial cracking strength

Search Result 81, Processing Time 0.03 seconds

An Experimental Study on Shear Behavior of High Strength Reinforced Concrete Beams using Input Steel Fiber (강섬유을 혼입한 고강도 철근콘크리트 보의 전단거동에 관한 실험적 연구)

  • 석인수;박종건;곽계환
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.277-282
    • /
    • 1999
  • Recently , the use of steel fibers has been increased in flexural members and beams of concrete structures ; such as bridge decks, highway roads, runway of airport , buildings , ete.. An experimental investigation of the shear behavior of high-strength reinforced concrete beams using input steel fiber was conducted. However only a few experimental tests have been carried out under static loading . The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking , crack patters, fracture modes. The load versus strain and load versus deflection relation were obtained from the static test.

  • PDF

Numerical Analysis of ECC Uniaxial Tension Behavior (ECC의 1축 인장 거동 해석)

  • Kim, Yun-Yong;Lee, Bang-Yeon;Kwon, Seung-Hee;Kim, Jeong-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.917-920
    • /
    • 2008
  • ECC is a special kind of high performance cementititous composite which exhibits typically more than 2% tensile strain capacity by bridging microcracks at a crack section. Therefore, micromechanics should be adopted to obtain multiple cracking and strain hardening behavior. This paper propose a linear elastic analysis method to simulate the multiple cracking and strain hardening behavior of ECC. In an analysis, the stress-crack opening relation modified considering the orientation of fibers and the number of effective fibers is adopted. Furthermore, to account for uncertainty of materials and interface between materials, the randomness is assigned to the tensile strength(${\sigma}_{fci}$), elastic modulus($E_{ci}$), peak bridging stress(${\sigma}_{Bi}$) and crack opening at peak bridging stress(${\delta}_{Bi}$), initial stress at a crack section due to chemical bonding, (${\sigma}_{0i}$), and crack spacing(${\alpha}_cX_d$). Test results shows the number of cracking and stiffness of cracked section are important parameters and strain hardening behavior and maximum strain capacity can be simulated using the proposed method.

  • PDF

Shell Finite Element of Reinforced Concrete for Internal Pressure Analysis of Nuclear Containment Building (격납건물 내압해석을 위한 철근콘크리트 쉘 유한요소)

  • Lee, Hong-Pyo;Choun, Young-Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.577-585
    • /
    • 2009
  • A 9-node degenerated shell finite element(FE), which has been developed for assessment of ultimate pressure capacity and nonlinear analysis for nuclear containment building is described in this paper. Reissner-Midnlin(RM) assumptions are adopted to develop the shell FE so that transverse shear deformation effects is considered. Material model for concrete prior to cracking is constructed based on the equivalent stress-equivalent strain relationship. Tension stiffening model, shear transfer mechanism and compressive strength reduction model are used to model the material behavior of concrete after cracking. Niwa and Aoyagi-Yamada failure criteria have been adapted to find initial cracking point in compression-tension and tension-tension region, respectively. Finally, the performance of the developed program is tested and demonstrated with several examples. From the numerical tests, the present results show a good agreement with experimental data or other numerical results.

EFFECT OF FLASHING AND UPSETTING PARAMETERS ON THE FLASH BUTT WELDING OF HIGH STRENGTH STEEL

  • Kim, Young-Sub;Kang, Moon-Jin
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.384-389
    • /
    • 2002
  • This study was aimed to evaluate the weldability and optimize the welding conditions for flash butt welding of 780MPa grade steel applied to the automotive bumper reinforcement. And then the relationship between the welding conditions and the joint performance relating specifically to coil-joining steel would be established. The effect of welding conditions between flashing and upsetting process was elucidated. Microstructure observation of the joint indicated that the decarburized band was mainly changed with upsetting process. Width of HAZ was also related to the upsetting conditions rather than the flashing conditions. Generally maximum hardness at HAZ was correlated with $C_{eq}$ of steel and the empirical relationship was obtained to estimate the HAZ properties. Tensile elongation at the joint was usually decreased with increasing the initial clamping distance. Investigation of fracture surface after tensile and bending tests reveal that the origin of cracking at the joint was oxide inclusions composed of $SiO_2$, MnO, $Al_2$ $O_3$, and/or FeO. The amount of inclusions was dependent on the composition ratio of Mn/Si in steel. If this ratio was above 4, the amount of inclusions was low and then the resistance to cracking at the joint was enough to maintain the joint performance. It was obtained that the flashing process influenced the conditions for the energy input to establish uniform or non-uniform molten layer, while the upsetting conditions influenced the joint strength. Heat input variable during flashing process was also discussed with the joint properties.

  • PDF

Failure Analysis of Top Nozzle Holddown Spring Screw for Nuclear Fuel Assembly (핵연료상단고정체 누름스프링 체결나사의 파손해석)

  • Koh, S.K.;Ryu, C.H.;Lee, Jeong-Jun;Na, E.G.;Baek, T.H.;Jeon, K.L.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1234-1239
    • /
    • 2003
  • A failure analysis of holddown spring screw was performed using fracture mechanics approach. The spring screw was designed such that it was capable of sustaining the loads imposed by the initial tensile preload and operational loads. In order to investigate the cause of failure, a stress analysis of the top nozzle spring assembly was done using finite element analysis and a life prediction of the screw was made using a fracture mechanics approach. The elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Primary water stress corrosion cracking life of the Inconel 600 screw was predicted by using integration of the Scott model and resulted in 1.42 years, which was fairly close to the actual service life of the holddown spring screw.

  • PDF

Fracture Behavior of UHPC Reinforced with Hybrid Steel Fibers (하이브리드 강섬유로 보강된 UHPC의 파괴거동)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.223-234
    • /
    • 2016
  • In this study, direct tension test for hybrid steel fiber reinforced ultra-high performance concrete (UHPC) containing two different steel fibers with a length of 16 and 19 mm was performed to investigate the fracture behavior of UHPC. Test results showed that crack strength and tensile strength, and fracture energy increased with increasing the fiber volume ratio. Based on the test results, the peak cohesive stress at the crack tip, tensile strength, and fracture energy depending on the fiber volume ratio were proposed. The proposed tensile strength of UHPC was suggested as a function of the fiber volume ratio and compressive strength. The peak cohesive stress at the crack tip and fracture energy were also proposed as a function of the tensile strength. The predicted values were relatively agree well with the test results. Thus, the proposed equations is expected to be applicable to UHPC with a compressive strength of 140~170 MPa and a fiber volume ratio of less than 2%.

Evaluation of Workability and Strength in Concrete with Cellulose Fibers (셀룰로오즈 섬유 함유 콘크리트의 작업 성능 및 강도 평가)

  • Ryu, Hwa-Sung;Lee, Sang-Seok;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.198-203
    • /
    • 2020
  • Cracking due to material behavior like drying shrinkage easily occurs since tensile strength in concrete is very low at initial curing stage. In this paper, workability such as air content and slump was evaluated on CFC(Cellulose Fiber Concrete) with 0.0 ~ 2.0% of fiber addition, and the tests for tensile/compressive strength were performed. With increasing addition ratio of fiber, air content and slump kept similar level to 1.0kg/㎥ of addition ratio, and this trend was effective to 2 hours after mixing. Strength was enhanced with increasing addition ratio, which showed 7.0 ~ 9.0% for compressive strength and 7.0 ~ 22.0% for tensile strength, respectively. The tensile strength increased relatively more, which show the addition of cellulose fiber was very effective to crack resistance. The workability in CFC can be guaranteed for 2 hours in the following conditions like 2 minutes of mixing period and 1.0kg/㎥ of addition ratio of fiber.

Engineering Properties of HPFRCC Including Both Organic and Inoranic Fibers (유·무기 섬유를 복합사용한 HPFRCC의 공학적 특성)

  • Lee, Jong Tae;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.615-620
    • /
    • 2015
  • The high performance fiber reinforced cementitious composite (HPFRCC) controls the cracking development of the structure by inducing micro-cracking and strain hardening behavior after the initial cracking under the tensile conditions. Although, in Korea, the research about manufacturing the single-fiber reinforced cementitious composite or the mechanical properties of hardened status has been conducted, the research to apply the HPFRCC with multi-fiber is not sufficient. Hence, in this research, considering the workability and economic aspect for practical applications, the engineering properties of HPFRCC with combined long steel fiber (SL) and long organic fiber (OL) are evaluated such as workability and strength. As a result of evaluating the engineering properties of HPFRCC, the most favorable performance was obtained when the mixture contained 1.5% of combined SL and OL.

Evaluation on Shear Performance of the Dapped Ends of Precast Gerber′s U-Beams (프리캐스트 게르버 U형보의 댑 전단 거동평가)

  • 박현석;유승룡
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.492-502
    • /
    • 2002
  • The dapped ends of the Gerber's beam were designed by PCI(Prestressed Concrete Institute) and CPCI(Canadian Prestressed Concrete Institute) methods. The depths of nibs with precast and topping concrete, which were halves of the total beam depth, were 77 cm md 18.2 cm, respectably. Shear tests were performed on four full scale beam ends. All specimens designed by PCI and CPCI methods showed crackings at the re-entrant coner of dap before the 32 % of full service design loading, and failed at the load level higher than their design strength but less than their calculated nominal strength. The specimens with increased hanger reinforcement show more effective in development of initial crackings, more ductile in failure with distributed crackings, and failed in higher strength than those of PCI requirement. The tested specimens designed by CPCI method were more ductile in failure than those of the PCI methods.

Experimental behavior of VHSC encased composite stub column under compression and end moment

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Mei, Liu;Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.69-83
    • /
    • 2019
  • This paper investigates the structural behavior of very high strength concrete encased steel composite columns via combined experimental and analytical study. The experimental programme examines stub composite columns under pure compression and eccentric compression. The experimental results show that the high strength encased concrete composite column exhibits brittle post peak behavior and low ductility but has acceptable compressive resistance. The high strength concrete encased composite column subjected to early spalling and initial flexural cracking due to its brittle nature that may degrade the stiffness and ultimate resistance. The analytical study compares the current code methods (ACI 318, Eurocode 4, AISC 360 and Chinese JGJ 138) in predicting the compressive resistance of the high strength concrete encased composite columns to verify the accuracy. The plastic design resistance may not be fully achieved. A database including the concrete encased composite column under concentered and eccentric compression is established to verify the predictions using the proposed elastic, elastoplastic and plastic methods. Image-oriented intelligent recognition tool-based fiber element method is programmed to predict the load resistances. It is found that the plastic method can give an accurate prediction of the load resistance for the encased composite column using normal strength concrete (20-60 MPa) while the elastoplastic method provides reasonably conservative predictions for the encased composite column using high strength concrete (60-120 MPa).