• Title/Summary/Keyword: inhibitory compound

Search Result 1,015, Processing Time 0.029 seconds

Tyrosinase Inhibitory Activities of Safrole from Myristica fragrans Houtt.

  • Cho, Soo Jeong;Kwon, Hyun Sook
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.4
    • /
    • pp.295-301
    • /
    • 2015
  • Five phenylpropanoids (1-5), a benzofuran neolignan (6), two 8-O-4'-neolignans (7-8), and five tetrahydrofuran lignans (9-13) were isolated from a methanol extract of Myristica fragrans seeds. The structures of 1-13 were determined by $^1H$- and $^{13}C$-NMR spectroscopic data analyses and a comparison with the literature data. Compound 3 was isolated for the first time from this plant. All the isolated compounds were evaluated for their inhibitory activity against tyrosinase. Among them, safrole (1) showed significant inhibitions against both the monophenolase ($IC_{50}=32.11{\mu}M$) and diphenolase ($IC_{50}=27.32{\mu}M$) activities of tyrosinase. The kinetic analysis shows that safrole (1) is competitive inhibitors for both monophenolase and diphenolase. The apparent inhibition constant ($K_i$) for safrole (1) binding with free enzyme was determined to be 16.05 and $13.66{\mu}M$ for monophenolase and diphenolase, respectively.

Isolation of 6,6'-Bieckol from Grateloupia elliptica and its Antioxidative and Anti-Cholinesterase Activity

  • Lee, Bong Ho;Choi, Byoung Wook;Lee, Soo Young
    • Ocean and Polar Research
    • /
    • v.39 no.1
    • /
    • pp.45-49
    • /
    • 2017
  • During the search for anticholinesterase compounds from marine organisms, we were able to isolate 6,6'-bieckol from a red alga, Grateloupia elliptica. This compound showed moderate acetylcholinesterase (AChE) inhibitory activity in a micromole range ($IC_{50}$ $44.5{\mu}M$). However, for butyrylcholinesterase (BuChE), a new target for the treatment of Alzheimer's disease (AD), it showed particularly potent inhibitory activity ($IC_{50}$ $27.4{\mu}M$), which is more potent compared to AChE. It also inhibits BACE-1, a new target for reducing the generation of ${\beta}-amyloid$.

Secondary Metabolites of Volvariella bombycina and Their Inhibitory Effects on Melanogenesis

  • Xu, Guang-Hua;Choo, Soo-Jin;Kim, Young-Hee;Ryoo, In-Ja;Seok, Soon-Ja;Ahn, Jong-Seog;Yoo, Ick-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.78-81
    • /
    • 2010
  • Four compounds were isolated from the culture broth of Volvariella bombycina and they were identified as ergosta-4,6,8(14),22-tetraene-3-one (1), ergosterol peroxide (2), indole-3-carboxaldehyde (3), and indazole (4) by interpretation of spectroscopic data. Among them, compound 2 exhibited melanogenesis inhibitory effect in cultured B16 mouse melanoma cells.

Design, Synthesis and Evaluation of Pentacyclic Triterpenoids Similar to Glycyrrhetinic Acid Via Combination of Chemical and Microbial Modification as Glycogen Phosphorylases Inhibitor

  • Zhu, Yuyao;Zhang, Jian;Huang, Xiaode;Chen, Bin;Qian, Hua;Zhao, Botao
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1876-1882
    • /
    • 2018
  • A series of pentacyclic triterpenoids similar to glycyrrhetinic acid were designed and synthesized via the combination of chemical modification and microbial catalysis. All products were screened for the glycogen phosphorylases inhibitory activities in vitro. Within this series of derivatives, compound 5 displayed good inhibitory activities with $IC_{50}$ value of $27.7{\mu}M$, which is better than that of the other derivatives and glycyrrhetinic acid. Structure-activity relationship (SAR) analysis of these inhibitors was also discussed.

Inhibition of Aromatic L-Amino Acid Decarboxylase (AADC) by Some Phenolic Compounds from Medicinal Plants (천연 페놀성 화합물들의 방향족 아미노산 탈탄산효소 저해작용)

  • Ryu, Shi-Yong;Han, Yong-Nam;Han, Byung-Hoon
    • YAKHAK HOEJI
    • /
    • v.38 no.6
    • /
    • pp.791-794
    • /
    • 1994
  • Sixteen kinds of naturally occurring phenolic compounds including 5 stilbenes, 7 flavonoids and 4 anthraquinones were examined in the inhibitory activity against rat liver AADC(aromatic L-amino acid decarboxylase) in vitro, using 5-hydroxytryptophan as a substrate. Three hydroxystilbenes, resveratrol 1, rhapontigenin 3 and piceatanol 5, which were known to be monoamine oxidase A inhibitors, exhibited a significant inhibition against AADC($IC_{50}$=20, 8 and $5\;{\mu}M$, respectively). By the comparison of the activity of each phenolic compound, it was suggested that the 3',4'-dihydroxyphenyl group of stilbenes or flavones was the best pharmacophore for the AADC inhibitory activity.

  • PDF

Synthesis and Biological Evaluation of Furo[2,3-d]pyrimidines as Akt1 Kinase Inhibitors

  • Kim, Se-Young;Kim, Dong-Jin;Yang, Beom-Seok;Yoo, Kyung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.7
    • /
    • pp.1114-1118
    • /
    • 2007
  • Based on the hit compound 4 derived from focused library, a series of furo[2,3-d]pyrimidines were designed, synthesized and evaluated for the inhibitory activity against Akt1 kinase. And their structure-activity relationships were investigated. Of these compounds, 3a having 2-thienyl and methyl groups at R1 and R2 showed the most potent activity with an IC50 value of 24 μ M. Introduction of the thienyl groups at C-5 and C- 6 positions significantly improved potency compared to furyl and phenyl groups.

3,5-Bis(aminopyrimidinyl)indole Derivatives: Synthesis and Evaluation of Pim Kinase Inhibitory Activities

  • Lee, Jinho;More, Kunal N.;Yang, Seun-Ah;Hong, Victor S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2123-2129
    • /
    • 2014
  • Pim kinases are promising targets in the treatment of hematopoietic and solid cancers. Meridianin C was chosen as a starting point to discover novel pim kinase inhibitors. Using known pim kinase's structural information, aminopyrimidine was introduced to provide the hydrogen-bonding interactions with the conserved lysine residue in the ATP binding pocket of all three Pim kinases. Synthesized 3,5-bis(aminopyrimidinyl)indole derivatives showed pan-pim inhibitory activity. Aminoalkyl substituent was attached on the aminopyrimidine to further enhance the potency and physicochemical properties of compound. The research reveals a significative way of designing compounds with high potency and kinase selectivity for pan-pim kinases.

Inhibitory Effect of Algal Extracts on Mycelial Growth of the Tomato-Wilt Pathogen, Fusarium oxysporum f. sp. lycopersici

  • Kim, Ji-Young;Kim, Jeong-Dong
    • Mycobiology
    • /
    • v.36 no.4
    • /
    • pp.242-248
    • /
    • 2008
  • The present study was undertaken to explore the inhibitory effect of cyanobacterial extracts of Nostoc commune FA-103 against the tomato-wilt pathogen, Fusarium oxysporum f. sp. lycopersici. In an optimal medium, cell growth, antifungal activity, and antifungal compound production could be increased 2.7-fold, 4.1-fold, and 13.4-fold, respectively. A crude algal extract had a similar effect as mancozeb at the recommended dose, both in laboratory and pot tests. In vitro and in vivo fungal growth, spore sporulation and fungal infection of wilt pathogen in tomato seeds were significantly inhibited by cyanobacterial extracts. Nostoc commune FA-103 extracts have potential for the suppression of Fusarium oxysporum f. sp. lycopersici.

Phenolic constituents of Nelumbinis Semen and Their Tyrosinase Inhibitory Activity (연자육의 페놀성 성분 및 Tyrosinase 저해 활성)

  • Jeong, Ji Yeon;Mo, Eun Jin;Hwang, Bang Yeon;Lee, Mi Kyeong
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • In the course of screening tyrosinase inhibitory activity, EtOAc-soluble fraction of Nelumbinis Semen (Seeds of Nelumbo nucifera) showed significant inhibition. Further fractionation of the EtOAc-soluble fraction resulted in 12 compounds, which were identified as 4-(hydroxymethyl)phenol (1), tyrosol (2), 4-(hydroxymethyl)benzaldehyde (3), 4-hydroxybenzoic acid (4), 4-(2-methoxyvinyl)benzene-1,2-diol (5), 2,6-dihydroxybenzoic acid (6), (2R-trans)-2,3-dihydro-3,5,7,8-tetrahydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one (7), (+)-catechin (8), elephantorrhizol (9), (+)-dehydrovomifoliol (10), (-)-boscialin (11) and uridine (12). Compounds 5 and 7 were first reported from this plant. Among the isolated compounds, compound 7 showed strong inhibition on tyrosinase activity with mixed mechanism of competitive and noncompetitive inhibition.

Inhibitory Effect of Ginsenoside-Rp1, a Novel Ginsenoside Derivative, on the Functional Activation of Macrophage-like Cells

  • Park, Tae-Yoon;Cho, Jae-Youl
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.370-376
    • /
    • 2008
  • Ginsenoside Rp1 (G-Rp1) is a ginseng saponin derivative with chemopreventive and anti-cancer activities. In this study, we examined the regulatory activity of G-Rp1 on the functional activation of macrophages. G-Rp1 remarkably inhibited TNF-$\alpha$ production, LPS-induced cell cytotoxicity, NO production, ROS generation, and phagocytic uptake from lipopolysacchride (LPS)-activated RAW264.7 cells. According to structural feature study using several G-Rp1 analogs, two carbohydrates (glucose-glucose) at R1 position were observedto be highly effective, compared to other structural derivatives. Although the inhibitory activities of G-Rp1 on macrophage functions were not remarkable, several points that G-Rp1 was known to be safe, and that this compound was orally effective, suggest that G-Rp1 may be beneficial in treating macrophage-mediated immunological diseases.