• Title/Summary/Keyword: inhibition of melanin

Search Result 379, Processing Time 0.026 seconds

Effect of the BuOH Soluble Fraction of Cinnamomum camphora on Melanin Biosynthesis (녹나무 부탄올 분획물이 멜라닌 생합성에 미치는 영향)

  • Ha, Sang-Keun;Moon, Eun-Jung;Lee, Min-Jae;Park, Hye-Min;Yoo, Eun-Sook;Oh, Myung-Sook;Kim, Sun-Yeou
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.4
    • /
    • pp.293-300
    • /
    • 2009
  • This study was carried out to investigate the effect of Cinnamomum camphora on melanogenesis. The MeOH extract of Cinnamomum camphora inhibited mushroom tyrosinase activity in dose-dependent manner. Moreover, it significantly suppressed the melanin production in melan-a cells at the concentration of $100{\mu}/m{\ell}$. The MeOH extract was partitioned with ethyl acetate, n-butanol and water. Among them, the BuOH soluble fraction exhibited significant inhibitory effect on mushroom tyrosinase. In addition, the BuOH soluble fraction reduced the melanin production in melan-a cells. But, the BuOH soluble fraction had less inhibition effects on melan-a cell originated tyrosinase. So, it was performed western blotting for melanogenic proteins (tyrosinase, tyrosinase-related protein (TRP-2)) using melan-a cells. The BuOH soluble fraction inhibited the protein expression of tyrosinase at the concentration of $100{\mu}/m{\ell}$. The results suggested that the BuOH soluble fraction of C. camphora might be a potent inhibitor of melanin biosynthesis in melan-a cells.

Study of ShengmaisanJiaweifang Extracts on the Inhibitory Effects of Melanin Synthesis and Superoxide Dismutase Activity (생맥산가미방 추출물이 멜라닌 생합성 저해 효과와 SOD 활성에 미치는 연구)

  • Jeong, Hyun Woo;Choi, Chan Hen
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.5
    • /
    • pp.267-274
    • /
    • 2019
  • This study aims to evaluate the effects of Shengmaisan (SMS) and three types of ShengmaisanJiaweifang on the inhibitory effect of melanin synthesis in B16F10 cells, the mechanism of action through tyrosinase, and the antioxidant effect through superoxide dismutase (SOD) activity. In this study, we used ShengmaisanJiaweifangs (SMS, SMSRR, SMSAD, SMSAR) to research the whitening effects in B16F10 cell lines. Shengmaisan (SMS) was a herbal medicine composed of Ginseng Radix, Liriopis Tuber, and Schisandrae Fructus. ShengmaisanJiaweifangs included SMSRR (SMS added with Rehmanniae Radix), SMSAD (SMS added with Asparagi Radix) and SMSAR (SMS added with Astragali Radix). We measured the cell viability, the inhibition rate of the melanin biosynthesis, and the activity of tyrosinase and SOD in malignant melanoma, B16F10 cells, to survey the whitening effect and the mechanism of the impact on the sample. As a result, SMSRR significantly suppressed the cell viability of B16F10 at more than $500{\mu}g/m{\ell}$ and significantly inhibited the generation of melanin induced by ${\alpha}$-MSH at more than $250{\mu}g/m{\ell}$. SMSRR ($500{\mu}g/m{\ell}$) decreased the activity of tyrosinase while increased the activity of SOD. Therefore, we considered that the SMSRR would be able to produce high value-added products more SMS if used as a commercial.

Inhibitory Effects of Methanol Extract of Kaempferia galanga on melanogenesis in B16/F10 Melanoma Cells (B16/F10 흑색종양세포에서 삼내자 메탄올 추출물의 멜라닌 생성에 미치는 억제효과)

  • Yoon, Jung-Won;Han, Jung-Min;Yoon, Hwa-Jung;Ko, Woo-Shin
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.26 no.1
    • /
    • pp.1-18
    • /
    • 2013
  • Objective: Recently the demands for the effective and safe depigmentative and anti-aging agents of the skin have increased due to the medical, pharmaceutical and cosmetic reasons. The purpose of this study is to investigate the MKG(Methanol Extract of Kaempferia galanga) and their dermal bioactivity properties related to cosmeceuticals such as depigmentation. Methods: We assessed inhibitory effects of MKG on melanin production in B16/F10 melanoma cells, on mushroom tyrosinase activity, effects of MKG on the expression tyrosinase, TRP-1, TRP-2, GSK-$3{\beta}$, CREB, MITF in B16/F10 melanoma cells without cytotoxicity range. Cell viability was measured by MTT assay and tyrosinase activity was assessed using by DOPA staining, western-blot analysis. We measured inhibition of melanin synthesis and tyrosinase activity by down-regulation of melanogenic enzyme expressions in ${\alpha}$-MSH induced melanogenesis B16/F10 melanoma cells. Results: MKG inhibited tyrosinase-activity, total melanin contents and dendrite out-growth. MKG inhibited melanogenesis by down-regulation of tyorsinase, TRP-1, TRP-2, CREB, and MITF in B16/F10 cells. The treatment with MKG at the 12.5, $25{\mu}g/ml$ level significantly inhibited the melanin synthesis induced ${\alpha}$-MSH in B16/F10 melanoma cells compared with untreated control. Conclusion: These results suggest that MKG inhibit melanin biosynthesis which is involved in hyper-pigmentation. So MKG is considered to be used as a whitening components reducing cytotoxicity.

Inhibitory Effects of Saposhnikoviae Radix Extracts on the Melanin Production and Elastase Activity in B16F10 cells (흑색종 세포주에서 멜라닌 생성과 엘라스타제 활성 억제에 미치는 방풍의 효과)

  • Choi, Chan Hun;Wang, Kung The;Cho, Hye Rin;Jeong, Jong Gil;Jeong, Hyun Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.296-302
    • /
    • 2014
  • Saposhmikoviae Radix can treat various skin disease by anti-pruitus and anti-inflammatory effects. This study was designed to investigate effects of Saposhmikoviae Radix Extracts(SRE) on skin elasticity and whitening using B16F10 cell lines. In this experiment, We observed effect of SRE on cell viability, inhibition of melanin synthesis and inhibitory effect on tyrosinase and elastase. In results, SRE treated group showed lowered proliferation rates significantly compared to non-treated group. More than SRE $125{\mu}g/m{\ell}$ of treated groups were lower levels of melanin synthesis respectively. SRE did not show inhibitory effect on tyrosinase activities in vitro and in B16F10 cells. Finally, SRE suppressed elastse type I and IV activities in dose-dependent manner in vitro. And SRE also slightly suppressed elastase activities in B16F10 cells. In conclusion, these results suggest that SRE can inhibit melanin synthesis and inhibt elastase activity. So, We suggest that SRE can be maintained skin elasticity or whitening.

The Inhibitory Effects of Alnus Japonica Steud. Extract on Melanogenesis (적양 추출물의 멜라닌 합성 저해효과)

  • Lee, Jun Young;Im, Kyung Ran;Jung, Taek Kyu;Yoon, Kyung-Sup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.2
    • /
    • pp.159-166
    • /
    • 2013
  • In order to develop new skin whitening agents, we prepared the EtOAc layer (AJE) after enzyme treatment of 75% EtOH extract of the Alnus Japonica Steud. We measured their tyrosinase inhibitory activity in vitro and melanin synthesis inhibitory activity in B16-F1 melanoma cells. They did not show inhibitory activity against mushroom tyrosinase but showed melanin synthesis inhibitory activity in a dose-dependent manner. In a melanin synthesis inhibition assay, AJE suppressed melanin production up to 52% at a concentration of $40{\mu}g/mL$. To elucidate the mechanism of the inhibitory effects of AJE on melanogenesis, we measured expression of melanogenesis-related proteins by the western blot assay. As a result, AJE suppressed the expression of tyrosinase related protein 1 (TRP-1) and microphthalmia associated transcription factor (MITF). Moreover, AJE increased the expression of phosphorylated extracellular signal-regulated kinase (p-ERK). These results conclude that ERK activation by AJE reduces melanin synthesis via MITF downregulation and is subsequent to the inhibition of TRP-1 expression. Therefore, we suggest that AJE could be used as active ingredients for skin whitening.

Melanogenesis Inhibition by Forsythiae Fructus Extract in Human Melanoma Cells (인체 멜라닌세포주에서 연교(連翹) 추출물의 멜라닌생성 억제기전 연구)

  • Jo, Mi-Gyeong;Mun, Yeun-Ja;Woo, Won-Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.371-376
    • /
    • 2008
  • In this study, we have investigated the hypo-pigmentary mechanism of methanol extract of Forsythiae Fructus in human melanocyte cell line, HM3KO. Treatment of HM3KO cells with Forsythiae Fructus extract markedly inhibited melanin biosynthesis in a dose-dependent manner. Decreased melanin contents occurred through the decrease of tyrosinase protein and activity. The mRNA levels of tyrosinase and tyrosinase-related protein 1 (TRP-1) were also reduced by Forsythiae Fructus extract. Moreover, the level of intracellular cyclic AMP (cAMP) was significantly decreased by treatment of Forsythiae Fructus extract. These results suggest that Forsythiae Fructus reduces melanin synthesis by down regulation of tyrosinase mRNA transcription, and this is closely related to the cAMP-dependent pathway.

Inhibitory Effect of Prunus persica Flesh Extract (PPFE) on Melanogenesis through the Microphthalmia-associated Transcription Factor (MITF)-mediated Pathway

  • Park, Hyen-Joo;Park, Kwang-Kyun;Hwang, Jae-Kwan;Chung, Won-Yoon;Lee, Sang-Kook
    • Natural Product Sciences
    • /
    • v.17 no.1
    • /
    • pp.26-32
    • /
    • 2011
  • Novel tyrosinase inhibitors are important for pigmentation in the skin. Following extraction of tyrosinase inhibitors from edible vegetables or fruits, we found that the Prunus persica flesh extract (PPFE) exhibited potential inhibitory activity for melanogenesis. PPFE showed tyrosinase inhibitory activity in an enzymatic assay and PPFE also significantly inhibited the melanin formation in cultured mouse melan-a cells. Moreover, real-time RT-PCR analysis revealed that the inhibition of melanin production by PPFE was closely related to marked suppression of mRNA expression of tyrosinase and tyrosinase-related protein-1 and -2 (TRP-1 and TRP-2) in melan-a cells. Further investigation found that the modulation of tyrosinase expression by PPFE was associated with the transcriptional regulation of the microphthalmia-associated transcription factor (MITF). PPFE inhibited the promoter activity of MITF and suppressed MITF mRNA expression in melan-a cells. These results indicate that PPFE down-regulates melanogenesis-associated gene expression through MITF-mediated transcriptional regulation and these events might be related to the hypopigmentary effects of PPFE.

Citrus Peel Wastes as Functional Materials for Cosmeceuticals

  • Kim, Sang-Suk;Lee, Jung-A;Kim, Ji-Young;Lee, Nam-Ho;Hyun, Chang-Gu
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • The suitability of CPWs, by-products of the juice industry, was investigated as a source for the production of cosmeceuticals. Four kinds of CPWs, CW, CWE, CWER, and CWEA, were examined for their antioxidant potentials in terms of DPPH radical-scavenging ability for anti-wrinkle applications, inhibition of tyrosinase or melanin production for whitening products, and anti-inflammatory effects to treat various skin diseases such as atopic dermatitis and acne as well as for anti-bacterial activity against acne-inducing pathogens. Of the four extracts, CWER was the most potent tyrosinase inhibitor ($IC_{50}$ value: $109\;{\mu}g/mL$), and CWEA ($IC_{50}:\;167\;{\mu}g/mL$) showed good antioxidative effects. CWE and CWEA samples had dose-dependent inhibitory effects on the melanin production. The cytotoxic effects of the four CPWs were determined by colorimetric MTT assays using human keratinocyte HaCaT cells. Most extracts exhibited low cytotoxicity at $100\;{\mu}g/mL$. These results suggest CPWs are attractive candidates for topical applications on the human skin.

The Effects of Baickbujasan Extract on the Skin Damage and Pigmendation Induced by Ultraviolet Irradiation (백부자산(白附子散)이 자외선 조사된 피부 손상과 색소침착에 미치는 영향)

  • Kim, Ji-Hoon;Hong, Seong-Ug
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.21 no.1
    • /
    • pp.70-82
    • /
    • 2008
  • Objective : The purpose of this study is to examine the effects of Baickbujasan(BB) on the skin damage and depigmentation. Method : The inhibition of tyrosinase activity, melanogenesis and cell viability in cultured B16 melanoma cells were measured. In order to test effects of reduction of melanogenesis, B16 F-10 mouse melanoma stem line was employed to extract melanin from cultured cell, where BB was added or not, and was dissolved in alkali for colorimetric analysis. Also, in order to test skin alteration in C57BL/6 after UV irradiation, the animals were grouped into a UV urradiation group and UV irradiation after BB application group. Dopa oxidase tissue staining was excuted to invesitage the change in the distribution of active melanin cell. The distribution of active melanin cell in inner skin of iNOS after damage from UVB irradiation and the manifestation condition of P53 which takes part in natural death of keratinocyte were examined. Result : The results indicate that BB has significant effects on tyrosinase activity, and melanogenesis in vivo test. BB seems to reduce C57BL/6, external dermatological damage, for instance, erythematous papule, eczema, loss of keratinocyte, reduction in pus, and relieves dermatological damages. Conclusion : BB can be applied externally for UV protection and depigmentation.

  • PDF

In vitro Modulation of Proliferation and Melanization of B16/F10 Melanoma Cells by Quercetin (Quercetin이 B16/F10 멜라닌세포의 중식 및 멜라닌화에 미치는 영향)

  • 천현자;백승화;우원홍;황상구;김춘관;김춘관
    • YAKHAK HOEJI
    • /
    • v.46 no.1
    • /
    • pp.75-80
    • /
    • 2002
  • Quercetin is one of the bioflavonoid compounds and has multiple biological effects such as antioxidant and effective anti-inflammatory agent. Melanin has an important role in protecting human skin from the damaging effects of ultra-violet W) radiation. We studied the effect of quercetin on proliferation of B16/F10 melanoma cells. After 48h treatment of cells with quercetin, the cells exhibited a dose-dependent inhibition in their proliferation without apoptosis. Therefore, the decrease in cell numbers may be due to cell growth arrest, not due to cell death by cytotoxicity. We also investigated the effect of quercetin on melanogenesis of this cells. B16/F10 melanoma cells were grown for 48h in the presence of 0.01~50$\mu\textrm{g}$/ml quercetin and the total melanin contents were measured. Quercetin stimulated melanization of the cells in low concentrations (0.01~20$\mu\textrm{g}$/ml), whereas it inhibited melanization in high concentrations (30~50$\mu\textrm{g}$/ml). It was observed that quercetin differently regulates melanogenesis of B16/F10 melanoma cells dependent on its concentrations.