• 제목/요약/키워드: inhibition corrosion

검색결과 189건 처리시간 0.018초

Study on Corrosion Inhibition from Aspect of Quantum Chemistry

  • Fouda, A.S.;Abu-Elnader, H.M.;Soliman, M.S.
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권2호
    • /
    • pp.97-99
    • /
    • 1986
  • Calculated ionization potential, electron affinity, electron density and bond order of some thiophene derivatives have been obtained and correlated with the inhibition of corrosion produced by these substances as evaluated by polarization curves. It is apparent that such quantities as the electron density or ionization potential play an important role. The calculation was carried out by the Extended Huckel method for the series of substituted thiophene derivatives.

The Inhibition of C-steel Corrosion in H3PO4 Solution by Some Furfural Hydrazone Derivatives

  • Fouda, A.S.;Badr, G.E.;El-Haddad, M.N.
    • 대한화학회지
    • /
    • 제52권2호
    • /
    • pp.124-132
    • /
    • 2008
  • H3SO4(M: 몰농도) 용액에서 탄소강의 부식방지제로 Furfural hydrazone 유도체의 효과를 질량손실법 및 정전류극성법을 사용해 연구하였다. 이들 유도체 존재하에서 탄소강의 부식속도가 급격히 감소함을 관찰하였다. 이 연구로부터 부식방지효율은 부식방지제 농도가 증가함에 따라 증가하였고 I와 SCN을 첨가하면 부식방지효율은 더욱 증가되었다. 질량손실법을 사용해 5×10-6 M의 유도체가 있을 때와 없을 때 30-60oC 사이에서 탄소강 부식에 미치는 온도 효과를 보았다. 부식과정에 대한 활성화에너지(Ea*)와 다른 열역학적 변수들을 계산하였고 이들에 대해 논의하였다. 정전류극성법을 통해 유도체들이 혼합형 방지제로 작용함을 알았고 외부전류를 흘려주었을 때 음극은 더욱 분극되었다. 3M H3SO4 용액에서 탄소강 표면에 이들 유도체들의 흡착은 Frumkin의 흡착등온을 따랐다. 이들 유도체들의 화학구조를 통해 부식방지 메커니즘을 설명하였다.

탄소강 부식 억제제로서 알칸 티올의 Ab-initio DFT 모델링 (Ab-initio DFT Modeling of Alkanethiols as Carbon Steel Corrosion Inhibitors)

  • 핫산 라기즈;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.91-92
    • /
    • 2021
  • In the present work, we simulated and explained the bonding of three alkanethiols - hexanethiol (HT), decanethiol (DT), and 11-mercaptoundecanoic acid (MDA) - with Fe(110) surface and Fe2 clusters using Density Functional Theory (DFT) to probe the corrosion inhibition mechanisms. The interaction energies computed from periodic DFT calculations successfully predicted the experimental inhibition performance. We have found strong covalent bond formation between S(thiol) and Fe-atoms in both approaches, further confirmed by the projected density of states and electron density difference. Besides, natural bond orbital (NBO) charge distribution showed that DT had stronger electron-donation and back-donation synergic interactions with Fe-atoms.

  • PDF

Corrosion Protection Properties of Co3O4 and CoFe2O4 Nanoparticles for Water-Based Epoxy Coatings on 2024-T3 Aluminum Alloys

  • Thu Thuy Thai;Anh Truc Trinh;Thi Thanh Tam Pham;Hoan Nguyen Xuan
    • Corrosion Science and Technology
    • /
    • 제22권2호
    • /
    • pp.90-98
    • /
    • 2023
  • In this study, cobalt oxide (Co3O4) and cobalt-doped magnetite (CoFe2O4) nanoparticles were synthesized by a hydrothermal method. They were then used as corrosion inhibitors for corrosion protection of AA2024-T3 aluminum alloys. These obtained nanoparticles were characterized by x-ray diffraction, field-emission scanning electron microscopy, and Zeta potential measurements. Corrosion inhibition activities of Co3O4 and CoFe2O4 nanoparticles were determined by performing electrochemical measurements for bare AA2024-T3 aluminum alloys in 0.05 M NaCl + 0.1 M Na2SO4 solution containing Co3O4 or CoFe2O4 nanoparticles. Corrosion protection for AA2024-T3 aluminum alloys by a water-based epoxy with or without the synthesized Co3O4 or CoFe2O4 nanoparticles was investigated by electrochemical impedance spectroscopy during immersion in 0.1 M NaCl solution. The corrosion protection of epoxy coating deposited on the AA2024-T3 surface was improved by incorporating Co3O4 or CoFe2O4 nanoparticles in the coating. The corrosion protection performance of the epoxy coating containing CoFe2O4 was higher than that of the epoxy coating containing Co3O4.

Gravimetric Measurements and Theoretical Calculations of 4-Aminoantipyrine Derivatives as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solution: Comparative Studies

  • Firas F. Sayyid;Ali M. Mustafa;Slafa I. Ibrahim;Mustafa K. Mohsin;Mahdi M. Hanoon;Mohammed H. H. Al-Kaabi;A. A. H. Kadhum;Wan Nor Roslam Wan Isahak;A. A. Al-Amiery
    • Corrosion Science and Technology
    • /
    • 제22권2호
    • /
    • pp.73-89
    • /
    • 2023
  • Due to continuous promotion of green alternatives to toxic petrochemicals by government policies, research efforts towards the development of green corrosion inhibitors have intensified recently. The objective of the current work was to develop novel green and sustainable corrosion inhibitors derived from 4-aminoantipyrine to effectively prevent corrosion of mild steel in corrosive environments. Gravimetric methods were used to investigate corrosion inhibition of 4-((furan-2-ylmethylene)amino)antipyrine (FAP) and 4-((pyridin-2-ylmethylene)amino)antipyrine (PAP) for mild steel in 1 M HCl. FAP and PAP were subjected to quantum chemical calculations using density functional theory (DFT). DFT was used to determine the mechanism of mild steel corrosion inhibition using inhibitors tested in HCl. Results demonstrated that these tested inhibitors could effectively inhibit mild steel corrosion in 1.0 M HCl. At 0.0005 M, these inhibitors' efficiencies for FAP and PAP were 93.3% and 96.5%, respectively. The Langmuir adsorption isotherm was obeyed by these inhibitors on the mild steel surface. Values of adsorption free energies, ΔGoads, revealed that FAP followed chemical and physical adsorptions.

염화물 오염 콘크리트 공극 용액에서 철근의 부식 억제에 대한 혼합 억제제의 효과 (Effect of Mixed Inhibitor on Corrosion Inhibition of Steel Rebar in Chloride Contaminated Concrete Pore Solution)

  • 소우멘 만달;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.32-33
    • /
    • 2021
  • The corrosion of the embedded steel rebars and the consequent deterioration of the reinforced concrete structure has become a challenging concern to the construction industries for the fiscal deficit. However, corrosion inhibitors are potential and being widely used for corrosion mitigation to solve such problems. This study has been focused on the mixed type of corrosion inhibitor where one component of the corrosion inhibitor is organic and another one is inorganic material. 0.1 (M) triethanolamine (TEA) and 0.01 (M) sodium hexametaphosphate (SHMP) have been mixed in distilled water to produce the mixed inhibitor. Studies of the steel rebar corrosion in chloride contaminated (3.5 wt.% NaCl) concrete pore (CCCP) solution has been conducted using different concentrations of corrosion inhibitor. Electrochemical impedance spectroscopy (EIS) method is involved to understand the corrosion behaviour of the steel rebars at different exposure durations.

  • PDF

Corrosion Inhibition Performance of Two Ketene Dithioacetal Derivatives for Stainless Steel in Hydrochloric Acid Solution

  • Lemallem, Salah Eddine;Fiala, Abdelali;Ladouani, Hayet Brahim;Allal, Hamza
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권2호
    • /
    • pp.237-253
    • /
    • 2022
  • The methyl 2-(1,3-dithietan -2- ylidene)-3-oxobutanoate (MDYO) and 2-(1,3-dithietan-2-ylidene) cyclohexane -1,3-dione (DYCD) were synthesized and tested at various concentrations as corrosion inhibitors for 316L stainless steel in 1 M HCl using weight loss, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), surface analysis techniques (SEM / EDX and Raman spectroscopy) and Functional Density Theory (DFT) was also used to calculate quantum parameters. The obtained results indicated that the inhibition efficiency of MDYO and DYCD increases with their concentration, and the highest value of corrosion inhibition efficiency was determined in the range of concentrations investigated (0.01 × 10-3 - 10-3 M). Polarization curves (Tafel extrapolation) showed that both compounds act as mixed-type inhibitors in 1M HCl solutions. Electrochemical impedance spectra (Nyquist plots) are characterized by a capacitive loop observed at high frequencies, and another small inductive loop near low frequencies. The thermodynamic data of adsorption of the two compounds on the stainless steel surface and the activation energies were determined and then discussed. Analysis of experimental results shows that MDYO and DYCD inhibitors adsorb to the metal surface according to the Langmuir model and the mechanism of adsorption of both inhibitors involves physisorption. SEM-EDX results confirm the existence of an inhibitor protective film on the stainless steel surface. The results derived from theoretical calculations supported the experimental observation.

An Investigation of Mild Steel with Nitrogen-containing Inhibitor in Hydrochloric Acid

  • Horng, Y.T.;Tsai, Yi-Liang;Tu, Ching-Fang;Lee, Chien-Ming;Wei, F.I.;Shih, H.C.
    • Corrosion Science and Technology
    • /
    • 제2권5호
    • /
    • pp.233-237
    • /
    • 2003
  • Pickling inhibitors can be used to form an adsorbed layer on the metal surface to hinder the discharge of H^+$ and dissolution of metal ions. Nitrogen-containing inhibitors were selected as corrosion inhibitors for mild steel (MS) in pickling acid process. In this study, the addition of inhibitor, the pickling temperatures and the pickling times were the parameters to investigate the effects on the inhibition efficiency (IE) for MS by using weight loss measurement. Preliminary results show that the IE increased with the increase in pickling time from 10 minutes to 60 minutes, and the IE also increased with the increase in temperature at room temperature and $40^{\circ}C$. At the higher temperature. the IE values are higher and almost independent with the pickling time. Furthermore, the potentiodynamic polarization, open circuit corrosion potential-time and corrosion current-time studies show that nitorgen-containing inhibitor behaves predominantly as cathodic polarization. The roughness test and SEM investigation are also studied in this paper.

Corrosion Inhibition of Copper-nickel Alloy: Experimental and Theoretical Studies

  • Khadom, Anees A.;Yaro, Aprael S.;Musa, Ahmed Y.;Mohamad, Abu Bakar;Kadhum, Abdul Amir H.
    • 대한화학회지
    • /
    • 제56권4호
    • /
    • pp.406-415
    • /
    • 2012
  • The corrosion inhibition of copper-nickel alloy by Ethylenediamine (EDA) and Diethylenetriamine (DETA) in 1.5M HCl has been investigated by weight loss technique at different temperatures. Maximum value of inhibitor efficiency was 75% at $35^{\circ}C$ and 0.2 M inhibitor concentration EDA, while the lower value was 4% at $35^{\circ}C$ and 0.01 M inhibitor concentration DETA. Two mathematical models were used to represent the corrosion rate data, second order polynomial model and exponential model respectively. Nonlinear regression analysis showed that the first model was better than the second model with high correlation coefficient. The reactivity of studied inhibitors was analyzed through theoretical calculations based on density functional theory (DFT). The results showed that the reactive sites were located on the nitrogen (N1, N2 and N4) atoms.

Exploiting the Anticorrosion Effects of Vernonia Amygdalina Extract for Protection of Mild Steel in Acidic Environments

  • Adindu, Blessing;Ogukwe, Cynthia;Eze, Francis;Oguzie, Emeka
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권4호
    • /
    • pp.251-262
    • /
    • 2016
  • The corrosion protection of mild steel in 1M HCl and 0.5M $H_2SO_4$ solutions by ethanol extract of Vernonia amygdalina (VA) was studied using a combination of experimental and computational methods. The obtained results revealed that VA reduced the corrosion of mild steel in both environments and inhibition efficiency increased with VA concentration but decreased with prolonged exposure. Electrochemical results showed that the extract functioned via mixed corrosion inhibiting mechanism by adsorption of some organic constituents of the extract on the metal/acid interface. Findings from infrared spectroscopy and electron microscopy all confirmed that VA retarded mild steel corrosion in both 1M HCl and 0.5M $H_2SO_4$ through an adsorption process. The adsorption behavior of selected constituents of the extract was modeled using density functional theory computations.