• Title/Summary/Keyword: inhibiting activities

Search Result 584, Processing Time 0.025 seconds

Anticancer Activities of the Methanolic Extract from Lemon Leaves in Human Breast Cancer Stem Cells (인간 유방암 줄기세포에서 레몬잎 메탄올 추출물의 항암 효능)

  • Moon, Jeong Yong;Nguyen, Linh Thi Thao;Hyun, Ho Bong;Osman, Ahmed;Cho, Minwhan;Han, Suyeong;Lee, Dong-Sun;Ahn, Kwang Seok
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.3
    • /
    • pp.219-226
    • /
    • 2015
  • The anticancer activity of a methanolic extract from lemon leaves (MLL) was assessed in MCF-7-SC human breast cancer stem cells. MLL induced apoptosis in MCF-7-SC, as evidenced by increased apoptotic body formation, sub-G1 cell population, annexin V-positive cells, Bax/Bcl-2 ratio, as well as proteolytic activation of caspase-9 and caspase-3, and degradation of poly (ADP-ribose) polymerase (PARP) protein. Concomitantly, MLL induced the formation of acidic vesicular organelles, increased LC3-II accumulation, and reduced the activation of Akt, mTOR, and p70S6K, suggesting that MLL initiates an autophagic progression in MCF-7-SC via the Akt/mTOR pathway. Epithelial-mesenchymal transition (EMT), a critical step in the acquisition of the metastatic state, is an attractive target for therapeutic interventions directed against tumor metastasis. At low concentrations, MLL induced anti-metastatic effects on MCF-7-SC by inhibiting the EMT process. Exposure to MLL also led to an increase in the epithelial marker E-cadherin, but decreased protein levels of the mesenchymal markers Snail and Slug. Collectively, this study provides evidence that lemon leaves possess cytotoxicity and anti-metastatic properties. Therefore, MLL may prove to be beneficial as a medicinal plant for alternative novel anticancer drugs and nutraceutical products.

Isolation and Structure Identification of Antifungal Substance from Aspergillus terreus (Aspergillus terreus로부터 항진균성 물질의 분리 및 구조분석)

  • Kim, Keun-Ki;Park, Ki-Hun;Moon, Suk-Sik;Kang, Kyu-Young
    • Applied Biological Chemistry
    • /
    • v.40 no.6
    • /
    • pp.593-596
    • /
    • 1997
  • In the course of search antagonistic fungi from soil in green house, four kind of fungi (AF1, AF2, AF3, AF4) were isolated, which have activities against Phytophthora capsici, Botrytis cinera, Rhizoctonia solani, Pythium ultimum and Fusarium oxysporum. The AF2 was identified according to the morphological description of Aspergillus terreus. This antagonistic fungus inhibiting various plant pathogens was effective to reduce disease incidence of cucumber seedlings caused by mixed inoculum of Rhizoctonia solani, Pythium ultimum and Fusarium oxysporum. Antifungal compound I was isolated and purified by fresh chromatography from A. terreus. The $^1H$ and $^{13}C$ assignment of compound I was achieved from two-dimensional $^1H-^1H\;COSY$, HMQC, HMBC with the add of homonuclear and heteronuclear double resonance experiment. The compound I was identified butyrolactone I (${\alpha}$-oxo-${\beta}$-(p-hydroxyphenyl)-${\gamma}$-(p-hydroxy-m-3,3-dimethyl-allylbenzyl)-${\gamma}$-methoxycarbonyl-${\gamma}$-butyrolactone, $C_{24}H_{24}O_7$, M.W.=424).

  • PDF

Effects of Plant-origin Biological Active Materials on the Activities of Pathogenic Microbes and Rumen Microbes (식물유래 생리활성물질의 병원성 미생물 및 반추위 미생물 활성에 대한 영향)

  • 옥지운;이상민;임정화;이신자;문여황;이성실
    • Journal of Animal Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.709-718
    • /
    • 2006
  • In order to know the effects of Garlic, Scallion, Flavonoid, Urushiol, Anthocyanidin and Bio-MOS?? on pathogenic microbes and rumen anaerobic microbes, the growth rate of pathogens (including Escherichia coli O157, Salmonella paratyphi, Listeria monocytogenes and Staphylococcus aureus) and in vitro rumen microbial growth, gas production, ammonia concentration, carboxymethylcellulase(CMCase) activity, and microbial populations were investigated.The growth of pathogens was inhibited by supplementation of 0.1% Flavonoid, Scallion or Bio-MOS?? as biological active materials. And Scallion and Flavonoid had powerful antimicrobial properties on the pathogens applied in paper disc method.Although few effects by biological active materials disappeared in rumen fermentation in vitro, CMCase activity removed with supplementation of 1% of Flavonoid which had antimicrobial property in paper disc method. Scallion, having powerful antimicrobial property on pathogens and no inhibiting on rumen fermentation, might be a source in development of natural antimicrobial agent for ruminants.

Chemopreventive activity of Prunella Herba Vulgaris L. Aqua-acupuncture Solution (댑싸리하고초(夏枯草) 약침액(藥鍼液)의 암예방 활성)

  • Park Shin-Hwa;Lim Jong-Kook
    • Korean Journal of Acupuncture
    • /
    • v.18 no.1
    • /
    • pp.11-20
    • /
    • 2001
  • Cancer chemoprevention refer to the use of natural or synthetic substances to prevent the initiational and promtional events that occur during the process of carcinogenesis. The effect of Prunella Herba Vulgaris L. Aqua-acupuncture Solution (PVAS) and Prunella Herba Vulgaris L. Water-extracted Solution (PVWS) on the induction of phase II detoxification enzyme (quinone reductase, Glutathione S-transferase) and inhibition of phase I enzyme (cytochrome P4501A1) and benzo[a]pyrene-DNA adduct formation was examined. PVAS is potent inducers of quinone reductase activity. Glutathione levels were increased with PVAS, in cultured murine hepatoma Hepa1c1c7 cells. In addition glutathione S-transferase levels were increased with PVAS. However, there was 45.2% inhibition in the activity of cytochrome P4501A1 enzyme with the treatment of PVAS, $5{\times}$. At concentration of $1{\times}$ and $3{\times}$ of PVAS, the binding of $[^3H]B[a]P$ metabolites to DNA of NCTC-clone 1469 cell was inhibited by 25.3%, 45.0%, respectively. These results suggest that PVAS has chemopreventive potential by inducing quinone reductase and glutathione S-transferase activities, increasing GSH levels, inhibiting the activity of cytochrome P4501A1 and benzo[a]pyrene-DNA adduct formation.

  • PDF

Translation Inhibition Activity and Antifungal Activity of Korean Propolis (프로폴리스의 단백질합성저해활성 및 항진균활성)

  • Goh, Ah-Ra;Choi, Kap-Seong;Choi, Sang-Ki
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.1
    • /
    • pp.64-69
    • /
    • 2010
  • It has been known that propolis possesses anti-infective, anti-inflammatory, and anti-oxidative properties. Although antifungal activity of Propolis has already been demonstrated, very few studies has been conducted for action mechanism and its spectrum on fungi. We found that ethanol extract of propolis (EEP) inhibited in vitro translation. Since we also observed the growth inhibition of pathogenic fungi and anti-oxidative properties preliminarily, we try to see where those properties come from. Therefore we extracted the EEP further with chloroform, ethyl acetate and butanol. When their fractions were examined for the growth inhibition of Candida albicans, Saccharomyces cerevisiae, Candida glabrata, Candida lusitaniae, Cryptococcos neoformans, chloroform fraction exhibited the highest anti-fungal as well as anti-oxidative properties. Similarly the chloroform fraction showed highest translation-inhibiting activities among the various Propolis fractions. These data indicate that those properties might come from similar compounds.

Preparation of Natural Compounds-tripeptides Derivatives and Their Melanogensis Inhibitory Activity (천연유래물질 펩타이드 유도체의 제조와 멜라닌 생성 저해 효과 탐색)

  • Shin, Kyong-Hoon;Lee, Jae-Ho;Ryu, Geun-Seok;Jee, Kyung-Yup;Park, Soo-Nam;Kim, Jae-Il;Cho, In-Shik;Kim, Han-Young
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.3
    • /
    • pp.233-240
    • /
    • 2010
  • Derivatives of a novel natural compunds, melanostatin (PLG-$NH_2$) were prepared by solid phase synthesis[1,2] and assayed to evaluate their melanogensis inhibitory activity. Also, a small library (natural compound-XLG-$NH_2$, natural compound-X LG-OH) was prepared with same method for increasing synthetic yield and cost-reduction. PLG-$NH_2$ (Proline-Leucine-Glycine-$NH_2$) was well-known tripeptide as its $\alpha$-MSH release-inhibiting activity and tyrosinase inhibitory activity[3-5]. In order to choose best candidate for peptide derivatization, various natural compounds were screened by their tyrosinase inhibitory activity. As a result, caffeic acid and coumaric acid were selected. Most of these derivatives showed better activities than the parent natural compound, melanostatin.

Effect of Acanthopanax senticosus Extracts on Blood Sugar and Serum Lipid Profiles of Streptozotocin-Induced Diabetic Rats (Streptozotocin으로 유발한 당뇨 흰쥐의 혈당 및 혈청 지질함량에 미치는 가시오가피 추출물의 영향)

  • Kim Soon-Dong;Lee Sang-Il;Shin Kyung-Ok
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.15 no.5
    • /
    • pp.549-557
    • /
    • 2005
  • Effects of Acanthopanax senticosus extract (AS) on blood sugar content and serum lipid profiles of streptozotocin-induced diabetic rats were investigated. Experimental groups were classified into four groups, that is, normal control (NC) group, diabetic mellitus (DM) group, AS-fed group and DMAS-fed group. The AS group showed lower feed efficiency than the NC group, but the efficiency of DMAS group was higher than DM group. DMAS group showed the decreased water intake and urine by $45.5\%$ and $23.7\%$ respectively, compared with DM group. Compared with DM group, DMAS group decreased blood sugar by $46.9\%$ and triglyceride by $17.8\%$, total cholesterol by $10.0\%$ and LDL cholesterol by $22.0\%$ in serum, but increased serum HDL cholesterol by $14.4\%$ The relative percentage of liver or kidney per body weight, and the serum ALT activity in DMAS group were lower than those of DM group. There were no significant differences in hepatic glutathione(GSH) contents and total xanthine oxidase(XOD) activities among experimental groups. The hepatic lipid peroxide(LPO) content in DMAS group decreased by $54.6\%$ compared with that in DM group. The XOD (O type) and the ratio of O type to total type of both STZ-treated groups (DM and DMAS) were higher than those of NC group, but less conversion of D to O type was observed in DMAS group than in DM group. There was no significant difference in GST activity between NC and AS, but STZ-treated groups showed lower glutathione S-transferase(GST) activity than NC. In conclusion, it seems that AS reduces blood sugar by inhibiting the activity of xanthine oxidase type O as an oxygen-free radical generating system which induces the tissue damage. Antidiabetic effect of AS may regulate diabetes-induced high lipid profiles in blood.

  • PDF

The Characteristics of Thermophilic Fungi in Relation to Growth-Promoting Effect on the Mycelium of Pleurotus ostreatus (Pleurotus ostreatus 균사의 생장 촉진 효과를 나타내는 고온성 곰팡이의 특징)

  • Lee, Ho-Yong;Shin, Chang-Yup;Kim, Jun-Ho;Kim, Won-Rok;Lee, Young-Keun;Chang, Hwa-Hyoung;Song, In-Geun;Hyun, Soung-Hee;Min, Bong-Hee
    • The Korean Journal of Mycology
    • /
    • v.28 no.2
    • /
    • pp.97-102
    • /
    • 2000
  • The mycelial growth of Pleurotus ostreatus in compost is strongly stimulated by solid-state fermentation with thermophilic fungi which were isolated from oyster mushroom compost. The biochemical characteristics of these thermophilic fungi were investigated. Cellulase and ligninase activities were not detected by clear zone effect on CMC and lignin media. All of thermophilic fungi grew well with high mycelial density on xylan media and the growing rate of Sepedonium sp. S-2 observed very high. In results of MUF-test, extracellular enzyme activity of Sepedonium sp. S-2, and S-5 measured very high. On the compost after high temperature fermentation with Sepedonium sp. S-2 and S-5, the mycelial growing rate of Pleurotus ostreatus was increased about 50% and it also showed the inhibiting effect on mycelial growth of Trichoderma sp. SJG-51. Isolated thermophilic fungi, Sepedonium sp. S-2 and S-5 were expected as very useful organism for making oyster mushroom compost.

  • PDF

Isolation of marine algicidal bacteria from surface seawater and sediment samples associated with harmful algal blooms in Korea (유해조류번성 주변의 해수와 침전물에서 살조균의 분리)

  • Kristyanto, Sylvia;Kim, Jaisoo
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.40-48
    • /
    • 2016
  • This study mainly focused on isolation of marine algicidal bacteria associated with phytoplankton blooms and characterization of algicidal activity against harmful algae. Harmful algal blooms (HABs) found naturally in surface waters have caused many environmental problems worldwide. In this study, forty bacterial strains that have capability of inhibiting harmful algal growth were isolated from Masan Bay, Jinhae Bay, Dol Island, Jangmok Bay, and the Tongyeong Sea, Republic of Korea. The bacteria were screened furthermore for the characteristics on algicidal activities against Cochlodinium polykrikoides, Chattonella marina, Skeletonema costatum, Heterosigma akashiwo, Heterocapsa triquetra, Prorocentrum minimum, and Scrippsiella trochoidea. As a result, the algicidal bacteria that were screened from double over layer agar and microscopic counts tests belonged to genera Pseudomonas, Vibrio, Bacillus, Pseudoalteromonas, Ruegeria, Joostella, Marinomonas, Stakelama, Porphyrobacter, and Albirhodobacter. One of the most important HAB species is Co. polykrikoides and the strongest algicidal activity against the dinoflagellate was 94.00% after 6 h treatment with 10% bacterial culture filtrate. In this study, Marinomonas sp. M Jin 1-8, Stakelama sp. ZB Yeonmyeong 1-11 & 1-13, Porphyrobacter sp. M Yeonmyeong 2-22, and Albirhodobacter sp. 6-R Jin 6-1 were found to be as new genera of bacteria having anti-algal activity. These results suggest that these bacteria might play an important role in controlling phytoplankton blooms.

Inhibition of DNA-dependent Protein Kinase by Blocking Interaction between Ku Complex and Catalytic Subunit of DNA-dependent Protein Kinase

  • Kim, Chung-Hui;Cuong, Dang-Van;Kim, Jong-Su;Kim, Na-Ri;Kim, Eui-Yong;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.9-14
    • /
    • 2003
  • Recent studies indicated that cancer cells become resistant to ionizing radiation (IR) and chemotherapy drugs by enhanced DNA repair of the lesions. Therefore, it is expected to increase the killing of cancer cells and reduce drug resistance by inhibiting DNA repair pathways that tumor cells rely on to escape chemotherapy. There are a number of key human DNA repair pathways which depend on multimeric polypeptide activities. For example, Ku heterodimer regulatory DNA binding subunits (Ku70/Ku80) on binding to double strand DNA breaks (DSBs) are able to interact with 470-kDa DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and are essential for DNA-dependent protein kinase (DNA-PK) activity. It has been known that DNA-PK is an important factor for DNA repair and also is a sensor-transmitting damage signal to downstream targets, leading to cell cycles arrest. Our ultimate goal is to develop a treatment of breast tumors by targeting proteins involved in damage-signaling pathway and/or DNA repair. This would greatly facilitate tumor cell cytotoxic activity and programmed cell death through DNA damaging drug treatment. Therefore, we designed a domain of Ku80 mutants that binds to Ku70 but not DNA end binding activity and used the peptide in co-therapy strategy to see whether the targeted inhibition of DNA-PK activity sensitized breast cancer cells to irradiation or chemotherapy drug. We observed that the synthesized peptide (HNI-38) prevented DNA-PKcs from binding to Ku70/Ku80, thus resulting in inactivation of DNA-PK activity. Consequently, the peptide treated cells exhibited poor to no DNA repair, and became highly sensitive to IR or chemotherapy drugs, and the growth of breast cancer cells was inhibited. Additionally, the results obtained in the present study also support the physiological role of resistance of cancer cells to IR or chemotherapy.