• Title/Summary/Keyword: inherent uncertainty

Search Result 142, Processing Time 0.024 seconds

Robust spectrum sensing under noise uncertainty for spectrum sharing

  • Kim, Chang-Joo;Jin, Eun Sook;Cheon, Kyung-yul;Kim, Seon-Hwan
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.176-183
    • /
    • 2019
  • Spectrum sensing plays an important role in spectrum sharing. Energy detection is generally used because it does not require a priori knowledge of primary user (PU) signals; however, it is sensitive to noise uncertainty. An order statistics (OS) detector provides inherent protection against nonhomogeneous background signals. However, no analysis has been conducted yet to apply OS detection to spectrum sensing in a wireless channel to solve noise uncertainty. In this paper, we propose a robust spectrum sensing scheme based on generalized order statistics (GOS) and analyze the exact false alarm and detection probabilities under noise uncertainty. From the equation of the exact false alarm probability, the threshold value is calculated to maintain a constant false alarm rate. The detection probability is obtained from the calculated threshold under noise uncertainty. As a fusion rule for cooperative spectrum sensing, we adopt an OR rule, that is, a 1-out-of-N rule, and we call the proposed scheme GOS-OR. The analytical results show that the GOS-OR scheme can achieve optimum performance and maintain the desired false alarm rates if the coefficients of the GOS-OR detector can be correctly selected.

Stochastic design charts for bearing capacity of strip footings

  • Shahin, Mohamed A.;Cheung, Eric M.
    • Geomechanics and Engineering
    • /
    • v.3 no.2
    • /
    • pp.153-167
    • /
    • 2011
  • Traditional design methods of bearing capacity of shallow foundations are deterministic in the sense that they do not explicitly consider the inherent uncertainty associated with the factors affecting bearing capacity. To account for such uncertainty, available deterministic methods rather employ a fixed global factor of safety that may lead to inappropriate bearing capacity predictions. An alternative stochastic approach is essential to provide a more rational estimation of bearing capacity. In this paper, the likely distribution of predicted bearing capacity of strip footings subjected to vertical loads is obtained using a stochastic approach based on the Monte Carlo simulation. The approach accounts for the uncertainty associated with the soil shear strength parameters: cohesion, c, and friction angle, ${\phi}$, and the cross correlation between c and ${\phi}$. A set of stochastic design charts that assure target reliability levels of 90% and 95%, are developed for routine use by practitioners. The charts negate the need for a factor of safety and provide a more reliable indication of what the actual bearing capacity might be.

Probabilistic Technique for Power System Transmission Planning Using Cross-Entropy Method (Cross-Entropy를 이용한 전력계통계획의 확률적 기법 연구)

  • Lee, Jae-Hee;Joo, Sung-Kwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2136-2141
    • /
    • 2009
  • Transmission planning is an important part of power system planning to meet an increasing demand for electricity. The objective of transmission expansion is to minimize operational and construction costs subject to system constraints. There is inherent uncertainty in transmission planning due to errors in forecasted demand and fuel costs. Therefore, transmission planning process is not reliable if the uncertainty is not taken into account. The paper presents a systematic method to find the optimal location and amount of transmission expansion using Cross-Entropy (CE) incorporating uncertainties about future power system conditions. Numerical results are presented to demonstrate the performance of the proposed method.

Probabilistic Assessment of Hydrological Drought Using Hidden Markov Model in Han River Basin (은닉 마코프 모형을 이용한 한강유역 수문학적 가뭄의 확률론적 평가)

  • Park, Yei Jun;Yoo, Ji Young;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.5
    • /
    • pp.435-446
    • /
    • 2014
  • Various drought indices developed from previous studies can not consider the inherent uncertainty of drought because they assess droughts using a pre-defined threshold. In this study, to consider inherent uncertainty embedded in monthly streamflow data, Hidden Markov Model (HMM) based drought index (HMDI) was proposed and then probabilistic assessment of hydrologic drought was performed using HMDI instead of using pre-defined threshold. Using monthly streamflow data (1966~2009) of Pyeongchang river and Upper Namhan river provided by Water Management Information System (WAMIS), applying the HMM after moving-averaging the data with 3, 6, 12 month windows, this study calculated the posterior probability of hidden state that becomes the HMDI. For verifying the method, this study compared the HMDI and Standardized Streamflow Index (SSI) which is one of drought indices using a pre-defined threshold. When using the SSI, only one value can be used as a criterion to determine the drought severity. However, the HMDI can classify the drought condition considering inherent uncertainty in observations and show the probability of each drought condition at a particular point in time. In addition, the comparison results based on actual drought events occurred near the basin indicated that the HMDI outperformed the SSI to represent the drought events.

Wind tunnel test of wind turbine in United States and Europe (미국과 유럽의 풍력터빈 풍동실험)

  • Chang, Byeong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.42-46
    • /
    • 2005
  • In spite of fast growing of prediction codes, there is still not negligible uncertainty in their results. This uncertainty affects on the turbine structural design and power production prediction. With the growing size of wind turbine, reducing this uncertainty is becoming one of critical issues for high performance and efficient wind turbine design. In this respect, there are international efforts to evaluate and tune prediction codes of wind turbine. As the reference data for this purpose, field test data is not appropriate because of its uncontrollable wind characteristics and its inherent uncertainty. Wind tunnel can provide controllable wind. For this reason, NREL has done the full scale test of the 10m turbine at NASA-Ames. With this reference data, a blind comparison has been done with participation of 18 organizations with 19 modeling tools. The results were not favorable. In Europe, a similar project is going on. Nine organizations from five countries are participating in the MEXICO project to do full scale wind tunnel tests and calculation with prediction codes. In this study. these two projects were reviewed in respect of wind tunnel test and its contribution. As a conclusion, it is suggested that scale model wind tunnel tests can be a complementary tool to calculation codes which were evaluated worse than expected.

  • PDF

Catchment Responses in Time and Space to Parameter Uncertainty in Distributed Rainfall-Runoff Modeling (분포형 강우-유출 모형의 매개변수 불확실성에 대한 시.공간적 유역 응답)

  • Lee, Gi-Ha;Takara, Kaoru;Tachikawa, Yasuto;Sayama, Takahiro
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2215-2219
    • /
    • 2009
  • For model calibration in rainfall-runoff modeling, streamflow data at a specific outlet is obviously required but is not sufficient to identify parameters of a model since numerous parameter combinations can result in very similar model performance measures (i.e. objective functions) and indistinguishable simulated hydrographs. This phenomenon has been called 'equifinality' due to inherent parameter uncertainty involved in rainfall-runoff modeling. This study aims to investigate catchment responses in time and space to various uncertain parameter sets in distributed rainfall-runoff modeling. Seven plausible (or behavioral) parameter sets, which guarantee identically-good model performances, were sampled using deterministic and stochastic optimization methods entitled SCE and SCEM, respectively. Then, we applied them to a computational tracer method linked with a distributed rainfall-runoff model in order to trace and visualize potential origins of streamflow at a catchment outlet. The results showed that all hydrograph simulations based on the plausible parameter sets were performed equally well while internal catchment responses to them showed totally different aspects; different parameter values led to different distributions with respect to the streamflow origins in space and time despite identical simulated hydrographs. Additional information provided by the computational tracer method may be utilized as a complementary constraint for filtering out non-physical parameter set(s) (or reducing parameter uncertainty) in distributed rainfall-runoff modeling.

  • PDF

A STUDY ON THE GENERATING SYSTEM RELIABILITY INDEX EVALUATION WITH CONSIDERING THE LOAD FORECASTING UNCERTAINTY (수요예측에 오차를 고려한 신뢰도 지수 산정에 관한 연구)

  • Song, K.Y.;Kim, Y.H.;Cha, J.M.;Oh, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.402-405
    • /
    • 1991
  • This paper represents a new method for computing reliability indices by using Large Deviation method which is one of the probabilistic production cost simulations. The reliability measures are based on the models used for the loads and for the generating unit failure states. In computing these measures it has been tacitly assumed that the values of all parameters in the models are precisely known. In fact, however, some of these values must often be chosen with a considerable degree of uncertainty involved. This is particularly true for the forecast peak loads in the load model, where there is an inherent uncertainty in the method of forecasting, which are frequently based on insufficient statistics. In this paper, the effect of load forecasting uncertainty on the LOLP(Loss of Load Probability), is investigated. By applying the Large Deviation method to the IEEE Rilability Test System, it is verified that the proposed method is generally very accurate and very fast for computing system reliability indices.

  • PDF

Positional Uncertainty Reduction of Overlapped Ultrasonic Sensor Ring for Efficient Mobile Robot Obstacle Detection (효율적인 이동로봇의 장애물 탐지를 위한 중첩 초음파 센서 링의 위치 불확실성 감소)

  • Kim, Sung-Bok;Lee, Sang-Hyup
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.3
    • /
    • pp.198-206
    • /
    • 2009
  • This paper presents the reduction of the positional uncertainty of an ultrasonic sensor ring with overlapped beam pattern for the efficient obstacle detection of a mobile robot. Basically, it is assumed that a relatively small number of inexpensive low directivity ultrasonic sensors are installed at regular spacings along the side of a circular mobile robot with their beams overlapped. First, for both single and double obstacles, we show that the positional uncertainty inherent to an ultrasonic sensor can be reduced using the overlapped beam pattern, and also quantify the relative improvement in positional uncertainty. Second, given measured distance data from one or two ultrasonic sensors, we devise the geometric method to determine the position of an obstacle with respect to the center of a mobile robot. Third, we examine and compare existing ultrasonic sensor models, including Gaussian distribution, parabolic distribution, uniform distribution, and impulse, and then build the sensor model of overlapped ultrasonic sensors, adequate for obstacle detection in terms of positional uncertainty and computational requirement. Finally, through experiments using our prototype ultrasonic sensor ring, the validity of overlapped beam pattern for reduced positional uncertainty and efficient obstacle detection is demonstrated.

  • PDF

Evaluation of the Uncertainties in Rainfall-Runoff Model Using Meta-Gaussian Approach (Meta-Gaussian 방법을 이용한 강우-유출 모형에서의 불확실성 산정)

  • Kim, Byung-Sik;Kim, Bo-Kyung;Kwon, Hyun-Han
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.49-64
    • /
    • 2009
  • Rainfall-runoff models are used for efficient management, distribution, planning, and design of water resources in accordance with the process of hydrologic cycle. The models simplify the transition of rainfall to runoff as rainfall through different processes including evaporation, transpiration, interception, and infiltration. As the models simplify complex physical processes, gaps between the models and actual rainfall events exist. For more accurate simulation, appropriate models that suit analysis goals are selected and reliable long-term hydrological data are collected. However, uncertainty is inherent in models. It is therefore necessary to evaluate reliability of simulation results from models. A number of studies have evaluated uncertainty ingrained in rainfall-runoff models. In this paper, Meta-Gaussian method proposed by Montanari and Brath(2004) was used to assess uncertainty of simulation outputs from rainfall-runoff models. The model, which estimates upper and lower bounds of the confidence interval from probabilistic distribution of a model's error, can quantify global uncertainty of hydrological models. In this paper, Meta-Gaussian method was applied to analyze uncertainty of simulated runoff outputs from $Vflo^{TM}$, a physically-based distribution model and HEC-HMS model, a conceptual lumped model.

  • PDF

Uncertainties Influencing the Collapse Capacity of Steel Moment-Resisting Frames (철골모멘트 골조의 붕괴성능에 영향을 미치는 불확실성 분석)

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.351-359
    • /
    • 2015
  • In order to exactly evaluate the seismic collapse capacity of a structure, probabilistic approach is required by considering uncertainties related to its structural properties and ground motion. Regardless of the types of uncertainties, they influence on the seismic response of a structures and their effects are required to be estimated. An incremental dynamic analysis(IDA) is useful to investigate uncertainty-propagation due to ground motion. In this study, a 3-story steel moment-resisting frame is selected for a prototype frame and analyzed using the IDA. The uncertainty-propagation is assessed with categorized parameters representing epistemic uncertainties, such as the seismic weight, the inherent damping, the yield strength, and the elastic modulus. To do this, the influence of the uncertainty-propagation to the seismic collapse capacity of the prototype frame is probabilistically evaluated using the incremental dynamic analyses based on the Monte-Carlo simulation sampling with the Latin hypercube method. Of various parameters related to epistemic uncertainty-propagation, the inherent damping is investigated to be the most influential parameter on the seismic collapse capacity of the prototype frame.