DOI QR코드

DOI QR Code

Probabilistic Assessment of Hydrological Drought Using Hidden Markov Model in Han River Basin

은닉 마코프 모형을 이용한 한강유역 수문학적 가뭄의 확률론적 평가

  • Park, Yei Jun (Dept. of Civil and Environmental Engineering, Hanyang Univ.) ;
  • Yoo, Ji Young (Dept. of Civil Engineering, Chonbuk National Univ.) ;
  • Kwon, Hyun-Han (Dept. of Civil Engineering, Chonbuk National Univ.) ;
  • Kim, Tae-Woong (Dept. of Civil and Environmental Engineering, Hanyang Univ.)
  • 박예준 (한양대학교 대학원 건설환경공학과) ;
  • 유지영 (전북대학교 공과대학 토목공학과) ;
  • 권현한 (전북대학교 공과대학 토목공학과) ;
  • 김태웅 (한양대학교 공학대학 건설환경플랜트공학과)
  • Received : 2014.02.08
  • Accepted : 2014.04.08
  • Published : 2014.05.31

Abstract

Various drought indices developed from previous studies can not consider the inherent uncertainty of drought because they assess droughts using a pre-defined threshold. In this study, to consider inherent uncertainty embedded in monthly streamflow data, Hidden Markov Model (HMM) based drought index (HMDI) was proposed and then probabilistic assessment of hydrologic drought was performed using HMDI instead of using pre-defined threshold. Using monthly streamflow data (1966~2009) of Pyeongchang river and Upper Namhan river provided by Water Management Information System (WAMIS), applying the HMM after moving-averaging the data with 3, 6, 12 month windows, this study calculated the posterior probability of hidden state that becomes the HMDI. For verifying the method, this study compared the HMDI and Standardized Streamflow Index (SSI) which is one of drought indices using a pre-defined threshold. When using the SSI, only one value can be used as a criterion to determine the drought severity. However, the HMDI can classify the drought condition considering inherent uncertainty in observations and show the probability of each drought condition at a particular point in time. In addition, the comparison results based on actual drought events occurred near the basin indicated that the HMDI outperformed the SSI to represent the drought events.

지금까지 많은 연구를 통하여 제안된 다양한 가뭄지수들은 사전에 정의된 등급을 통하여 가뭄을 평가하기 때문에 가뭄현상에 내재된 불확실성을 고려하지 못하고 있다. 본 연구에서는 월 유출량 자료에 내재되어 있는 불확실성을 고려하기 위해 은닉 마코프 모형(HMM) 기반의 가뭄지수(HMDI)를 제안하고, 이를 이용하여 수문학적 가뭄에 대한 확률론적 평가를 수행하였다. WAMIS에서 제공하는 한강유역의 평창강과 남한강상류의 월평균 유출량 자료(1966~2009)를 이용하여 3, 6, 12개월씩 누적시킨 후, HMM에 적용하여 은닉상태의 사후확률을 계산하였다. 연구방법의 검증을 위해 HMM을 이용하여 추정된 각 은닉상태 별 사후확률(HMDI)과 기준값에 의해 가뭄을 평가하는 방법 중 하나인 표준유출지수(SSI)와 비교를 하였다. 분석결과, 기존 가뭄지수(SSI)를 사용하였을 때는 하나의 지수로 특정 시점에서의 가뭄 상태를 판단하였지만, HMDI는 자료에내재된 불확실성을 이용하여 가뭄의 상태를 분류하였고, 이는 특정 시점에서 가뭄 상태들이 나타날 확률로 표현되었다. 또한, 실제 가뭄사례와의 비교를 통해서 HMDI가 SSI에 비하여 가뭄에 대한 재현능력이 우수한 것으로 나타났다.

Keywords

References

  1. Ahn, S.R., Park, J.Y., Jung, I.K., Na, S.J., and Kim, S,J. (2009). "Hydrological drought assessment of agricultural reservoirs based on SWSI in Geum River Basin." Journal of the Korean Society of Agricultural Engineers, Vol. 51, No. 5, pp. 35-49 (in Korean). https://doi.org/10.5389/KSAE.2009.51.5.035
  2. American Meteorological Society (2004). Annual Report 2004, American Meteorological Society, Boston.
  3. Bae, D.-H., Son, K.-H., Hong, J.-Y., Kim, G.-S., Chung, J.S., Jung, U.-S., and Kim, J.-J. (2012). "Development of real-time drought monitoring and prediction system on Korea & East Asia region." Atmosphere. Korean Meteorological Society, Vol. 22, No. 2, pp. 267-277 (in Korean). https://doi.org/10.14191/Atmos.2012.22.2.267
  4. Bilmes, J. (1997). A Gentle Tutorial of the EM Algorithm and Its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models, Technical Report ICSI-TR-97-021, ICSI.
  5. Byun, H.-R. (2009). "Comparative analysis of the drought diagnosis and related systems." Journal of KOSHAM, Vol. 9, No. 2, pp. 7-18 (in Korean).
  6. Deng, L., Wu, J., Droppo, J., and Acero, A. (2005). "Dynamic compensation of HMM variances using the feature enhancement uncertainty computed from a parametric model of speech distortion." IEEE Transactions on Speech and Audio Processing, Vol. 13, No. 3, pp. 412-421. https://doi.org/10.1109/TSA.2005.845814
  7. Kwak, J.W., Kim, D.G., Lee, J.S., and Kim, H.S. (2012). "Hydrological drought analysis using copula theory." Journal of Korean Society of Civil Engineer, Vol. 32, No. 3B, pp. 161-168 (in Korean).
  8. Kwon, H.-H., Kim, T.J., Hwang, S.-H., and Kim, T.-W. (2013) "Development of daily rainfall simulation model based on homogeneous hidden markov chain." Journal of the Korean Society of Civil Engineers, Vol. 33, No. 5, pp. 1861-1870 (in Korean). https://doi.org/10.12652/Ksce.2013.33.5.1861
  9. Letinic, K., Sebastian, R., Barthel, A., and Toomre, D. (2010). "Deciphering subcellular processes in live imaging datasets via dynamic probabilistic networks." Bioinformatics, Vol. 26, No. 16, pp. 2029-2036. https://doi.org/10.1093/bioinformatics/btq331
  10. Lloyd-Huges, B., and Saunders, M.A. (2002). "A drought climatology for Europe." Int. J. Climatol., Vol. 22, No. 13, pp. 1571-1592. https://doi.org/10.1002/joc.846
  11. Mallya, G., Tripathi, S., Kirshner, S., and Govindaraju, R. (2013). "Probabilistic assessment of drought characteristics using hidden markov model." Journal of Hydrologic Engineering, Vol. 18, No. 7, pp. 834-845. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000699
  12. Matsuyama, Y. (2011). "Hidden markov model estimation based on alpha-EM algorithm: Discrete and continuous alpha-HMMs." International Joint Conference on Neural Network, San Jose, Vol. 7, No. 5, pp. 808-816.
  13. Mckee, T.B., Doesken, N.J., and Kieist, J. (1993). "The relationship of drought frequency and duration to time scales." 8th Conference on Applied Climatology, 17- 22 January 1993, Anaheim, California, pp. 179-184.
  14. Miller, D.R.H., Leek, T., Schwartz, R.M. (1999). A hidden markov model information retrieval system. Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 214-221.
  15. Mishra, A.K., and Singh, V.P. (2010). "A review of drought concepts." J. Hydrol., Vol. 391, No. 1-2, pp. 202-216. https://doi.org/10.1016/j.jhydrol.2010.07.012
  16. Modarres, R. (2007). "Streamflow drought time series forecasting." Stoch Environ Res Risk Assess, 21, pp. 223-233. https://doi.org/10.1007/s00477-006-0058-1
  17. Moon, H.K. (2002). Emotional Classification from Text Data by Hybrid Naive Bayes HMM, Master's Thesis, Seoul National University (in Korean).
  18. Palmer, W.C. (1965). Meteorological Drought, Research Paper No. 45, U.S. Weather Bureau, Washington, D.C.
  19. Park, H.-J. (2007). Korean Stock Forecasting Using Hidden Markov Model, Master's Thesis, Sungkyunkwan University (in Korean).
  20. Park, M.J., Shin, H.J., Choi, Y.D., Park, J.Y., and Kim, S.J. (2011). "Development of a hydrological drought index considering water availability." Journal of the Korean Society of Agricultural Engineers, Vol. 53, No. 6, pp. 165-170 (in Korean). https://doi.org/10.5389/KSAE.2011.53.6.165
  21. Rabiner, L.R. (1989). "A tutorial on hidden Markov models and selected applications in speech recognition." Proceedings of the IEEE, Vol. 77, No. 2, pp. 257-286.
  22. Robertson, A.W., Kirshner, S., and Smyth, P. (2004). "Downscaling of daily rainfall occurrence over northeast Brazil using a hidden markov model." J. Climate, Vol. 17, No. 22, pp. 4407-4424. https://doi.org/10.1175/JCLI-3216.1
  23. Seymore, K., McCallum, A., and Rosenfeld, R. (1999). "Learning hidden markov model structure for information extraction." In AAAI 99 Workshop on Machine Learning for Information Extraction, pp. 37-42.
  24. Shafer, B.A., and Dezman, L.E. (1982). "Development of a surface water supply index (SWSI) to assess the severity of drought conditions in snowpack runoff areas." Proceeding of the Western SnowConference, pp. 164-175.
  25. Shukla, S., and Wood, A.W. (2008). "Use of a standardized runoff index for characterizing hydrologic drought." Geophysical Research Letters, Vol. 35, L02405, doi:10.1029/2007GL032487.
  26. Suk, S.-Y., and Chung H.-Y. (2008). "A speech and character combined recognition engine for mobile devices." International Journal of Pervasive Computing and Communications, Vol. 4, No. 2, pp. 232-249. https://doi.org/10.1108/17427370810890409
  27. Thyer, M., and Kuczera, G. (2003). "A hidden markov model for modelling long-term persistence in multi-site rainfall time series 1. Model calibration using a Bayesian approach." Journal of Hydrology, Vol. 275, No. 1-2, pp. 12-26. https://doi.org/10.1016/S0022-1694(02)00412-2
  28. Yoo, J.-Y., Kwon, H.-H., Kim, T.-W., and Lee, S.-O. (2014). "Probabilistic assessment of drought characteristics based on homogeneous hidden markov model." Journal of the Korean Society of Civil Engineers, Vol. 34, No. 1, In print (in Korean). https://doi.org/10.12652/Ksce.2014.34.1.0145