• Title/Summary/Keyword: infrared images

Search Result 687, Processing Time 0.034 seconds

Merging Features and Optical-NIR Color Gradient of Early-type Galaxies

  • Kim, Du-Ho;Im, Myeong-Sin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.41.2-41.2
    • /
    • 2012
  • It has been suggested that merging plays an important role in the formation and the evolution of early-type galaxies (ETGs). Optical-NIR color gradients of ETGs in high density environments are found to be less steep than those of ETGs in low density environments, hinting frequent merger activities in ETGs in high density environments. In order to examine if the flat color gradients are the result of dry mergers, we studied the relations between merging features, luminosities, environments and color gradients of 196 low redshift ETGs selected from Sloan Digital Sky Survey (SDSS) Stripe82. Near Infrared (NIR) images are taken from UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). Color (r-K) gradients of ETGs with tidal features are a little flatter than relaxed ETGs, but not significant. We found that massive (> 10^11.3 solar masses) ETGs have -40% less scattered color gradients than less massive ETGs. The less scattered color gradients of massive ETGs could be evidence of dry merger processes in the evolution of massive ETGs. We found no relation between color gradients of ETGs and their environments.

  • PDF

Detection and Quantification of Defects in Composite Material by Using Thermal Wave Method

  • Ranjit, Shrestha;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.6
    • /
    • pp.398-406
    • /
    • 2015
  • This paper explored the results of experimental investigation on carbon fiber reinforced polymer (CFRP) composite sample with thermal wave technique. The thermal wave technique combines the advantages of both conventional thermal wave measurement and thermography using a commercial Infrared camera. The sample comprises the artificial inclusions of foreign material to simulate defects of different shape and size at different depths. Lock-in thermography is employed for the detection of defects. The temperature field of the front surface of sample was observed and analysed at several excitation frequencies ranging from 0.562 Hz down to 0.032 Hz. Four-point methodology was applied to extract the amplitude and phase of thermal wave's harmonic component. The phase images are analyzed to find qualitative and quantitative information about the defects.

Near-Infrared Photometric Study of Young Star Clusters in the Dwarf Starburst Galaxy NGC 1569

  • Kyeong, Jae-Mann;Sung, Eon-Chang;Kim, Sang-Chul;Chaboyer, Brian
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.56.1-56.1
    • /
    • 2010
  • We present JHK photometry of star clusters in the dwarf irregular/dwarf starburst galaxy NGC 1569. Adopting several criteria to exclude other sources like foreground stars, background galaxies, etc., ~150 star cluster candidates are identified in the near-infrared images of NGC 1569, which include very young star clusters. From analysis based on theoretical background, we find ten very young star clusters near the center of this galaxy. The total reddening values toward these clusters are estimated from comparison with the theoretical estimates given by star cluster mode.

  • PDF

Implementation of a Portable Identification System using Iris Recognition Techniques (홍채인식을 이용한 정보보안을 위한 휴대용 신분인식기 개발)

  • Joo, Sang-Hyun;Yang, Woo-Suk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.5
    • /
    • pp.107-112
    • /
    • 2011
  • In this paper, we introduce the implementation of the security system using iris recognition. This system acquires images with infrared camera and extracts the 2D code from a infrared image which uses scale-space filtering and concavity. We examine the system by (i) extract 2D code and (ii) compare the code that stored on the server (iii) measure FAR and FRR using pattern matching. Experiment results show that the proposed method is very suitable.

Observation of Spatial and temporal variability of sea skin surface temperature by a Thermal Infrared Camera

  • Tamba, Sumio;Yokoyama, Ryuzo;Parkes, Isabelle;David, Llewellyn-Jones
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.14-19
    • /
    • 1998
  • The MUBEX (MUtsu Bay sea surface temperature validation EXperiment) campaign has been held from 1995 to 1997 in summer. During the MUBEX campaign, a thermal infrared camera (TIC) installed on a research vessel, which was also equipped with other various observation devices, was intensively used to observe microscopic structure of sea skin surface temperature (SSST) behavior. We have now a total number of 500,000 images observed by the TIC under various weather conditions, i.e., very calm or wavy sea condition, and clear, patchy or cloudy sky condition. In this paper, we show typical SSST patterns observed by the TIC, and describe the result of statistical analysis of SSST.

  • PDF

A Vector Instruction-based RISC Architecture for a Photovoltaic System Monitoring Camera

  • Choi, Youngho;Ahn, Hyungkeun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.278-282
    • /
    • 2012
  • Photovoltaic systems have emerged to be one of the cleanest energy systems. Therefore, many large scale solar parks and PV farms have been built to prepare for the post fossil fuel ages. However, due to their large scale, to efficiently manage and operate PV systems, they need to be visually monitored within the range of infrared ray through the Internet. To satisfy this need, the efficient implementation of a high performance video compression standard is required. This paper therefore presents an implementation of H.264 motion estimation, which is one of the most data-intensive and complicated functions in H.264. To achieve this, this work implements vector instructions in hardware and incorporates them in a generic RISC processor architecture, thus increasing the processing speed while minimizing hardware and software design efforts. Extensive simulation results show that this proposed implementation can process motion estimations up to 13 times faster.

Near Infrared Wavelength Calibration without Telluric OH Lines

  • Nguyen, Ngan N.K.;Pak, Soojong;Kang, Wonseok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.223.2-223.2
    • /
    • 2012
  • Grating spectrograph observation in near-infrared bands requires wavelength calibrations. We first need to extract order-strips from the echellogram data using flat images, and then to correct the spatial distortions and wavelength scales of the order strips using calibration arc lamps or the telluric OH emission lines. For very high resolution spectrograph using echelle, however, the arc lamps do not have enough emission lines in the order-strips, so we usually use the OH lines for accurate wavelength calibrations in wavelengths shorter than 2.3 microns. In this poster, we present wavelength calibration methods for longer wavelength bands using the telluric absorption lines in early-type stellar spectra and the telluric atmospheric transmission models. This technique will be applied to the data reduction pipeline for the IGRINS.

  • PDF

Frequency-domain Diffuse Optical Tomography System Adopting Lock-in Amplifier (Lock-in 증폭기를 채용한 주파수영역 확산 광단층촬영 시스템)

  • Jun, Young-Sik;Baek, Woon-Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.3
    • /
    • pp.134-140
    • /
    • 2011
  • In this paper, we developed a frequency-domain diffuse optical tomography(DOT) system for non-invasively imaging in vivo. The system uses near-infrared(NIR) light sources and detectors for which the photon propagation in human tissue is dominated by scattering rather than by absorption. We present the experimental reconstruction images of absorption and scattering coefficients using a liquid tissue phantom, and we obtain the location and shape of an anomaly which has different optical properties than the phantom.

SMALL $H_3^+$ EMISSION PATCHES IN THE VICINITY OF JUPITER'S AURORAL REGIONS

  • KIM YONG-HA;KIM SANG JOON
    • Journal of The Korean Astronomical Society
    • /
    • v.28 no.1
    • /
    • pp.89-95
    • /
    • 1995
  • We examined a total of 166 images of $3.5{\mu}m\;H_3^+$ emission in the auroral regions of Jupiter observed with the Protocam on IRTF in 1991 and 1992, and found that 30 images contain a clearly isolated small emission patch in the vicinity of the northern auroral regions. Two different time sequences of the images show the small patches at the dusk limb in the range of System III longitudes from $270^{\circ}\;through\;0^{\circ}\;to\;90^{circ}$. The small patches in one sequence of the images, which were taken at 10 phase between $240^{\circ}\;and\;260^{\circ}$, may be related to the 10 flux tube, similarly suggested by Connerney et al. (1993). However, the small patches in the other sequence are separated from Io as much as $80^{\circ}$ in longitude. The positions of the small patches in both sequences are deviated equatorward from the 10 footprint oval by $5^{\circ}-8^{\circ}$ latitude in the longitudinal range of $270^{\circ}-360^{\circ}$. A significant modification is required in current Jovian magnetic field models near the Jupiter's surface if the small patches are produced at the foot of the 10 flux tube.

  • PDF

Local Feature Learning using Deep Canonical Correlation Analysis for Heterogeneous Face Recognition (이질적 얼굴인식을 위한 심층 정준상관분석을 이용한 지역적 얼굴 특징 학습 방법)

  • Choi, Yeoreum;Kim, Hyung-Il;Ro, Yong Man
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.848-855
    • /
    • 2016
  • Face recognition has received a great deal of attention for the wide range of applications in real-world scenario. In this scenario, mismatches (so called heterogeneity) in terms of resolution and illumination between gallery and test face images are inevitable due to the different capturing conditions. In order to deal with the mismatch problem, we propose a local feature learning method using deep canonical correlation analysis (DCCA) for heterogeneous face recognition. By the DCCA, we can effectively reduce the mismatch between the gallery and the test face images. Furthermore, the proposed local feature learned by the DCCA is able to enhance the discriminative power by using facial local structure information. Through the experiments on two different scenarios (i.e., matching near-infrared to visible face images and matching low-resolution to high-resolution face images), we could validate the effectiveness of the proposed method in terms of recognition accuracy using publicly available databases.