• Title/Summary/Keyword: informative censoring

Search Result 6, Processing Time 0.021 seconds

Effects of Informative Censoring in the Proportional Hazards Model (비례위험모형에서 정보적 중도절단의 효과)

  • 정대현;홍승만;원동유
    • Journal of Applied Reliability
    • /
    • v.2 no.2
    • /
    • pp.121-133
    • /
    • 2002
  • This paper concerns informative censoring and some of the difficulties it creates in analysis of survival data. For analyzing censored data, misclassification of informative censoring into random censoring is often unavoidable. It is worthwhile to investigate the impact of neglecting informative censoring on the estimation of the parameters of the proportional hazards model. The proposed model includes a primary failure which can be censored informatively or randomly and a followup failure which may be censored randomly. Simulation shows that the loss is about 30% with regard to the confidence interval if we neglect the informative censoring.

  • PDF

Bayesian estimation for the exponential distribution based on generalized multiply Type-II hybrid censoring

  • Jeon, Young Eun;Kang, Suk-Bok
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.4
    • /
    • pp.413-430
    • /
    • 2020
  • The multiply Type-II hybrid censoring scheme is disadvantaged by an experiment time that is too long. To overcome this limitation, we propose a generalized multiply Type-II hybrid censoring scheme. Some estimators of the scale parameter of the exponential distribution are derived under a generalized multiply Type-II hybrid censoring scheme. First, the maximum likelihood estimator of the scale parameter of the exponential distribution is obtained under the proposed censoring scheme. Second, we obtain the Bayes estimators under different loss functions with a noninformative prior and an informative prior. We approximate the Bayes estimators by Lindleys approximation and the Tierney-Kadane method since the posterior distributions obtained by the two priors are complicated. In addition, the Bayes estimators are obtained by using the Markov Chain Monte Carlo samples. Finally, all proposed estimators are compared in the sense of the mean squared error through the Monte Carlo simulation and applied to real data.

Statistical Analysis of Bivariate Current Status Data with Informative Censoring Using Frailty Effects

  • Kim, Yang-Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.1
    • /
    • pp.115-123
    • /
    • 2012
  • In animal tumorigenicity data, tumor onsets occur at several sites and onset times cannot be exactly observed. Instead, the existence of tumors is examined only at death time or sacrifice time of the animal. Such an incomplete data structure makes it difficult to investigate the effect of treatment on tumor onset times; in addition, such dependence should be considered when censoring due to death is related with tumor onset. A bivariate frailty effect is incorporated to model bivariate tumor onsets and to connect death with tumor. For the inference of parameters, EM algorithm is applied and a real NTP(National Toxicology Program) dataset is analyzed as an illustrative example.

Modeling Clustered Interval-Censored Failure Time Data with Informative Cluster Size (군집의 크기가 생존시간에 영향을 미치는 군집 구간중도절단된 자료에 대한 준모수적 모형)

  • Kim, Jinheum;Kim, Youn Nam
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.2
    • /
    • pp.331-343
    • /
    • 2014
  • We propose two estimating procedures to analyze clustered interval-censored data with an informative cluster size based on a marginal model and investigate their asymptotic properties. One is an extension of Cong et al. (2007) to interval-censored data and the other uses the within-cluster resampling method proposed by Hoffman et al. (2001). Simulation results imply that the proposed estimators have a better performance in terms of bias and coverage rate of true value than an estimator with no adjustment of informative cluster size when the cluster size is related with survival time. Finally, they are applied to lymphatic filariasis data adopted from Williamson et al. (2008).

Analysis of Tumorigenicity Data with Informative Censoring (종속적인 중도절단을 가진 동물종양 자료의 분석을 위한 모형)

  • Kim, Jin-Heum;Kim, Youn-Nam
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.5
    • /
    • pp.871-882
    • /
    • 2010
  • In animal tumorigenicity data, the occurrence time of tumor is not observed because the existence of a tumor is examined only at either time of natural death or time of sacrifice for the animal. A three-state model (Health-Tumor onset-Death) is widely used to model the incomplete data. In this paper, we employed a frailty effect into the three-state model to incorporate the dependency of death on tumor occurrence when the time of natural death works as an informative censoring against the tumor onset time. For the inference of parameters, then the EM algorithm is considered in order to deal with missing quantities of tumor onset time and random frailty. The proposed method is applied to the bladder tumor data taken from Lindsey and Ryan (1993, 1994) and a simulation study is performed to show the behavior of the proposed estimators.

Reliability Analysis under the Competing Risks (경쟁적 위험하에서의 신뢰성 분석)

  • Baik, Jaiwook
    • Journal of Applied Reliability
    • /
    • v.16 no.1
    • /
    • pp.56-63
    • /
    • 2016
  • Purpose: The purpose of this study is to point out that the Kaplan-Meier method is not valid to calculate the survival probability or failure probability (risk) in the presence of competing risks and to introduce more valid method of cumulative incidence function. Methods: Survival analysis methods have been widely used in biostatistics division. However the same methods have not been utilized in reliability division. Especially competing risks cases, where several causes of failure occur and the occurrence of one event precludes the occurrence of the other events, are scattered in reliability field. But they are not noticed in the realm of reliability expertism or they are analysed in the wrong way. Specifically Kaplan-Meier method which assumes that the censoring times and failure times are independent is used to calculate the probability of failure in the presence of competing risks, thereby overestimating the real probability of failure. Hence, cumulative incidence function is introduced and sample competing risks data are analysed using cumulative incidence function and some graphs. Finally comparison of cumulative incidence functions and regression type analysis are mentioned briefly. Results: Cumulative incidence function is used to calculate the survival probability or failure probability (risk) in the presence of competing risks and some useful graphs depicting the failure trend over the lifetime are introduced. Conclusion: This paper shows that Kaplan-Meier method is not appropriate for the evaluation of survival or failure over the course of lifetime. In stead, cumulative incidence function is shown to be useful. Some graphs using the cumulative incidence functions are also shown to be informative.