Liu, Peng;Xu, Gaochao;Yang, Kun;Wang, Kezhi;Li, Yang
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권12호
/
pp.5614-5633
/
2018
Mobile Edge Computing (MEC) and Wireless Power Transfer (WPT) are both recognized as promising techniques, one is for solving the resource insufficient of mobile devices and the other is for powering the mobile device. Naturally, by integrating the two techniques, task will be capable of being executed by the harvested energy which makes it possible that less intrinsic energy consumption for task execution. However, this innovative integration is facing several challenges inevitably. In this paper, we aim at prolonging the battery life of mobile device for which we need to maximize the harvested energy and minimize the consumed energy simultaneously, which is formulated as residual energy maximization (REM) problem where the offloading ratio, energy harvesting time, CPU frequency and transmission power of mobile device are all considered as key factors. To this end, we jointly optimize the offloading ratio, energy harvesting time, CPU frequency and transmission power of mobile device to solve the REM problem. Furthermore, we propose an efficient convex optimization and sequential unconstrained minimization technique based combining method to solve the formulated multi-constrained nonlinear optimization problem. The result shows that our joint optimization outperforms the single optimization on REM problem. Besides, the proposed algorithm is more efficiency.
최근 들어 모바일 디바이스와 GPS(Global Positioning System)의 발전으로 다양한 위치 기반 서비스(Location-Based Servises, LBS)를 활용할 수 있게 되었다. LBS 사용자는 서비스를 이용하기 위해 자신의 위치 정보를 서비스 제공자에게 노출한다. 이 과정에서 개인의 민감한 정보를 침해할 가능성이 있으므로 사용자의 위치 데이터를 변조하여 프라이버시를 보존할 수 있는 Geo-indistinguishability(Geo-Ind) 기법이 많이 활용되고 있다. 그러나 Geo-Ind 기법으로 인하여 사용자로부터 변조된 데이터를 수집하는 경우, LBS 제공자는 사용자 분포에 대한 정확한 정보를 얻을 수 없다. 그러므로 본 논문에서는 Geo-Ind 기법을 이용하여 사용자로부터 수집한 변조된 위치 데이터로부터 사용자 분포에 대한 정보를 정확하게 계산하기 위한 방법을 제안한다. 특히, Expectation-Maximization(EM) 기법을 이용하여 변조된 데이터로부터 사용자의 위치 분포를 정확하게 예측하기 위한 기법을 제안한다. 또한 실제 데이터를 이용해 제안 기법의 우수성을 입증한다.
In this paper, as an alternative to constant modulus algorithm based on MSE, maximization of the probability that equalizer output power is equal to the constant modulus of the transmitted symbols is introduced. The proposed algorithm using the gradient ascent method to the maximum probability criterion has superior convergence and steady-state MSE performance, and the error samples of the proposed algorithm exhibit more concentrated density functions in blind equalization environments. Simulation results indicate that the proposed training has a potential advantage versus MSE training for the constant modulus approach to blind equalization.
본 논문에서는 각 음원이 시간적 구조를 가졌을 경우 음원들을 분리해내는 확률적 음원분리 방법을 제안한다. 이를 위해 각 음원의 시간적 구조를 가우시안 프로세스(Gaussian process)로 모델링하고 기존의 음원분리 문제를 유사-가능도 최대화 문제(pseudo-likelihood maximization)로 공식화한다. 본 알고리즘을 통해 얻어진 데이타의 유사-가능도는 정규 분포이며 이는 가우시안 프로세스 회귀방법(Gaussian process regression)을 통해 쉽게 계산이 가능하다. 음원분리의 역혼합 행렬은 경도(gradient) 기반최적화 기법을 통해 데이타의 유사-가능도를 최대화하는 해를 찾음으로써 구해진다. 여러 실험을 통하여 제안 알고리듬이 몇 가지 특정 상황에서 기존의 분리 알고리듬들에 비해 우수한 성능을 보임을 확인 할 수 있다.
비디오 데이터에 존재하는 감정을 처리하는 것은 지능적인 인간과 컴퓨터와의 상호작용을 위해서 매우 중요한 일이다. 이러한 감정을 추출하기 위해서는 비디오로부터 감정에 관련된 특징들을 검출하기 위한 컴퓨팅 모델을 구축하는 것이 바람직하다. 본 논문에서는 비디오 셧에 존재하는 저급 특징들의 확률적인 분포를 이용하여 감정 이벤트 발생에 관련된 통계학적인 모델을 제안한다. 즉, 비디오 셧의 기본적인 특징을 추출하고 그 특징을 통계적으로 모델화 하여 감정을 유발하는 셧을 찾아낸다. 비디오 셧의 특징으로는 칼라, 카메라 모션 및 셧 길이의 변화를 이용한다. 이러한 특징들을 EM(Expectation Maximization) 알고리즘을 이용하여 GMM(Gaussian Mixture Model) 으로 모델링하고, 감정과 시간과의 관계를 MLE(Maximum Likelihood Estimation)를 이용하여 시간에 따른 확률분포 모델로 구성한다. 이런 두 개의 통계적인 모델들을 융합하여 베이시안 분류법을 적용하여 비디오 데이터로부터 감정에 관련된 셧을 찾아낸다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권6호
/
pp.2979-2995
/
2017
In recent years, there has been an increasing number of studies focused on identifying a set of spreaders to maximize the influence of spreading in complex networks. Although the k-core decomposition can effectively identify the single most influential spreader, selecting a group of nodes that has the largest k-core value as the seeds cannot increase the performance of the influence maximization because the propagation sphere of this group of nodes is overlapped. To overcome this limitation, we propose a neighborhood coreness cover and discount heuristic algorithm named "NCCDH" to identify a set of influential and decentralized seeds. Using this method, a node in the high-order shell with the largest neighborhood coreness and an uncovered status will be selected as the seed in each turn. In addition, the neighbors within the same shell layer of this seed will be covered, and the neighborhood coreness of the neighbors outside the shell layer will be discounted in the subsequent round. The experimental results show that with increases in the spreading probability, the NCCDH outperforms other algorithms in terms of the affected scale and spreading speed under the Susceptible-Infected-Recovered (SIR) and Susceptible-Infected (SI) models. Furthermore, this approach has a superior running time.
본 논문에서는 OFDMA 무선 이동 통신시스템에서 시스템의 수율을 최대화 하면서 비실시간 트래픽 사용자들에게 비례적인 공정성을 제공하기에 적합한 새로운 스케줄링 알고리즘을 제안 하였다. 새로이 제안된 알고리즘은 3GPP2에 적용된 비례공정 (Proportional Fairness) 스케줄링과 채널이득 값들에 대한 소팅 (Sorting) 개념을 응용하여 제안하였다. 비례공정 스케줄링은 OFDMA에서 각 사용자들에게 할당될 부반송파 개수를 계산하는데 응용하였으며, 소팅기법은 계산된 부반송파를 실제 사용자들에게 할당하는데 있어 시스템의 수율을 최대화 하는데 기여하였다. 모의실험을 통해 본 논문에 의해 새로이 제안된 알고리즘이 최대전송선택 알고리즘과 소팅을 하지 않은 경우에 비해 공정성 및 시스템 수율에서 특성이 향상됨을 알 수 있었으며, 또한 제안된 소팅 기법은 기존 사용자간 부반송파의 스와핑을 이용한 반복 순환기법과 비교 시 시스템 평균 수율은 거의 같으나 계산에 따른 부하가 최대 3배까지 개선됨을 알 수 있다.
이 논문에서는, 독립성분해석기법과 EM기법을 이용한 새로운 혼합영상분리 방법을 제안한다. 독립성분해석기법은 통계적으로 독립된 랜덤변수들의 선형조합으로 측정대상 랜덤신호를 표기하는 여러 통계신호처리 기법 중의 하나로, 정보의 분리, 특징 추출 통의 응용분야에 적용되고 있다. 기술적으로는, 독립성분기법은 주성분 분리기법의 확장이라 볼 수 있고, 근래에 혼합정보의 분리에 관련하여 많이 연구되고 있다. 현재까지의 연구 결과로는 혼합영상의 분리에 있어 독립성분해석기법만으로는 혼합영상분리의 해를 얻지 못하고 있다. 이러한 독립성분해석기법의 약점을 보완하는 방범으로, 최근에 이노베이션 프로세서를 전처리로 하는 독립성분해석기법을 혼합한 시스템을 이용한 혼합영상 분리가 시도되었다. 이노베이션 프로세서를 전처리로 첨가한 혼합영상분리의 과정도 독립성분해석기법만을 사용한 경우보다는 향상된 혼합영상분리를 하지만, 분류된 영상들이 원래의 혼합 전의 영상과 많이 다른 결과를 내고 있다. 기존의 방법들인 독립성분해석기법이나 이노베이션이 전처리로 적용된 경우에도 혼합이전의 영상간의 상관관계가 클 경우, 혼합영상의 분류가 잔 이루어지지 않는다. 본 논문에서는 이 약점을 보완하기 위하여. EM이론을 기존의 시스템에 전처리로 첨가하여 혼합 영상의 분리를 향상시키고자 하였다. 실험 결과에서는 최근에 연구된 이노베이션의 방법보다 EM을 적용시킨 경우가 향상된 혼합영상의 분리의 결과를 보여 주고 있다.
본 논문에서는 잡음 환경에서 음성 인식기의 성능을 향상시키기 위한 방법을 제안한다. 제안한 방법은 기존의 PMC방법으로 상태 당 가지 수가 많은 모델을 만들 때 발생하는 확률 밀도 분포의 변화를 보상하기 위해 상태 수준에서 조합한 파라미터를 재 추정하여 각 상태에서 가지의 확률 분포의 변화를 적응시키는 방법이다. 상태 당 다수의 가지를 가지는 CDHMM은 제안한 PMC 방법과 조합된다. 또한, EM 알고리즘은 가지 평균의 분산을 줄이기 위하여 모델 평균 파라미터를 적응시키는데 사용한다. 그리고 시뮬레이션을 통하여 본 논문에서 제안한 PMC 방법은 기존의PMC 방법보다 더 향상된 성능을 얻을 수 있었다.
Recent advance in electronics and scintillators makes it possible to utilize the time-of-flight (TOF) information in improving image reconstruction of positron emission tomography(PET). In this paper, we propose a TOF-based fast image reconstruction method for PET. The proposed method uses the deconvolution of TOF data for each angle view and the rotational averaging of deconvolved images. Simulation results show an improved performance of the proposed method, as compared with filtered backprojection (FBP) method, TOF-FBP, and TOF version of expectation-maximization(EM) methods. Simulation results also show a great potentiality of the proposed method in limited angle tomography applications.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.