Can the stock market really be predicted? Stock market prediction has attracted much attention from many fields including business, economics, statistics, and mathematics. Early research on stock market prediction was based on random walk theory (RWT) and the efficient market hypothesis (EMH). According to the EMH, stock market are largely driven by new information rather than present and past prices. Since it is unpredictable, stock market will follow a random walk. Even though these theories, Schumaker [2010] asserted that people keep trying to predict the stock market by using artificial intelligence, statistical estimates, and mathematical models. Mathematical approaches include Percolation Methods, Log-Periodic Oscillations and Wavelet Transforms to model future prices. Examples of artificial intelligence approaches that deals with optimization and machine learning are Genetic Algorithms, Support Vector Machines (SVM) and Neural Networks. Statistical approaches typically predicts the future by using past stock market data. Recently, financial engineers have started to predict the stock prices movement pattern by using the SNS data. SNS is the place where peoples opinions and ideas are freely flow and affect others' beliefs on certain things. Through word-of-mouth in SNS, people share product usage experiences, subjective feelings, and commonly accompanying sentiment or mood with others. An increasing number of empirical analyses of sentiment and mood are based on textual collections of public user generated data on the web. The Opinion mining is one domain of the data mining fields extracting public opinions exposed in SNS by utilizing data mining. There have been many studies on the issues of opinion mining from Web sources such as product reviews, forum posts and blogs. In relation to this literatures, we are trying to understand the effects of SNS exposures of firms on stock prices in Korea. Similarly to Bollen et al. [2011], we empirically analyze the impact of SNS exposures on stock return rates. We use Social Metrics by Daum Soft, an SNS big data analysis company in Korea. Social Metrics provides trends and public opinions in Twitter and blogs by using natural language process and analysis tools. It collects the sentences circulated in the Twitter in real time, and breaks down these sentences into the word units and then extracts keywords. In this study, we classify firms' exposures in SNS into two groups: positive and negative. To test the correlation and causation relationship between SNS exposures and stock price returns, we first collect 252 firms' stock prices and KRX100 index in the Korea Stock Exchange (KRX) from May 25, 2012 to September 1, 2012. We also gather the public attitudes (positive, negative) about these firms from Social Metrics over the same period of time. We conduct regression analysis between stock prices and the number of SNS exposures. Having checked the correlation between the two variables, we perform Granger causality test to see the causation direction between the two variables. The research result is that the number of total SNS exposures is positively related with stock market returns. The number of positive mentions of has also positive relationship with stock market returns. Contrarily, the number of negative mentions has negative relationship with stock market returns, but this relationship is statistically not significant. This means that the impact of positive mentions is statistically bigger than the impact of negative mentions. We also investigate whether the impacts are moderated by industry type and firm's size. We find that the SNS exposures impacts are bigger for IT firms than for non-IT firms, and bigger for small sized firms than for large sized firms. The results of Granger causality test shows change of stock price return is caused by SNS exposures, while the causation of the other way round is not significant. Therefore the correlation relationship between SNS exposures and stock prices has uni-direction causality. The more a firm is exposed in SNS, the more is the stock price likely to increase, while stock price changes may not cause more SNS mentions.
1990년대 중반에 협업 필터링의 출현으로 인하여 추천시스템에 관련된 연구가 늘어나게 되었다. 협업 필터링의 출현 이후 내용 기반 필터링, 협업 필터링과 내용 기반 필터링이 혼합된 하이브리드 필터링 등 새로운 기법들이 출현함으로써 2000년대에는 추천시스템의 연구가 눈에 띄게 증가하였다. 하지만 현재까지 추천시스템에 관련된 문헌들에 대한 리뷰와 분류가 체계적으로 되어있지 않다. 이와 같은 문제에 대한 해결방안으로써, 본 연구에서는 2001년부터 2010년도까지의 추천시스템에 관련된 문헌들 중 MIS Journal Ranking의 125개의 저널에서 추천시스템(Recommender system, Recommendation system), 협업 필터링(Collaborative Filtering), 내용 기반 필터링(Content based Filtering), 개인화 시스템(Personalized system) 등의 5가지 키워드로 제한하여 조사하였다. 총 37개의 저널에서 논문을 검색하였으며, 검색되어진 논문을 분석한 결과 추천시스템과 관련이 없는 논문을 제외한 총 187개의 논문을 선정하여 분석하였다. 이 연구에서는 그러나 컨퍼런스 논문, 석사, 박사학위 논문, 영어로 작성되지 않은 논문, 완성되지 않은 논문 등은 제외하였다. 본 연구에서는 187개의 논문을 분석하여 2001년부터 2010년까지의 각각의 년도 별 추천시스템의 연구에 대한 동향 분석, Journal별 추천시스템의 게재 분류, 추천시스템 어플리케이션의 사용 분야(책, 문서, 이미지, 영화, 음악, 쇼핑, TV 프로그램, 기타)별 분류 및 분석, 추천시스템에 사용된 데이터마이닝 기술(연관 규칙, 군집화, 의사 결정나무, 최근접 이웃 기법, 링크 분석 기법, 신경망, 회귀분석, 휴리스틱 기법)별 분류 및 분석을 수행하였다. 따라서 본 연구에서 제안한 각각의 분류 및 분석 결과들을 통하여 현재까지 추천시스템의 연구에 대한 연구 동향을 파악 할 수 있었으며, 분석결과를 통해 추천시스템에 관심이 있는 연구자와 전문가에게 미래의 추천시스템의 연구에 대한 가이드라인을 제시 할 수 있을 것이라고 기대한다.
매 학기마다 반복되는 대학의 강의시간표 작성 방법은 대학 상황에 따라 다르며, 교육환경의 변화에 따라 그 복잡도와 문제의 크기가 증가되는 NP-hard 문제로 알려져 있다. 그 동안, 효과적인 강의자원 배분을 위한 강의시간표 자동생성의 필요성으로 대학 강의시간표 작성에 관한 여러 방법의 연구가 진행되어 왔다. 일반적으로 교양과목 강의시간표는 대학행정부서에서, 전공과목은 학과에서 작성하는데 각 학과 단위의 전공강의시간표작성지원시스템은 학생들의 편의를 도모하고 수업의 효과와 전공강의자원의 효과적인 배분를 위해 중요한 역할을 한다. 이를 위하여 본 연구는 한신대학교의 새로운 강의시간표 작성체계에 따라, 사례 기반의 템플릿을 생성하고, 이로부터 규칙 기반의 상호대화형으로 효과적인 강의자원 배분이 가능한 전공강의시간표를 작성하는 두 단계 지원시스템을 제안하였으며, 사례 데이터를 이용한 프로토타입으로 그 효과를 검정하였다. 과거 사례와의 유사도는 학과 평균 41.72%로 템플릿의 유용성을 볼 수 있으며, 민감도 분석 결과에서 동일 시간 개설과목 허용 임계치를 90% 이상 설정한다면 강의시간표가 더 고른 분포를 갖게 됨을 검정하였다.
시장 수요 예측은 일정 기간 동안 소비자에게 판매되는 동종 제품 또는 서비스의 수량 혹은 매출액의 규모를 추정하는 활동으로서, 기업경영활동에 있어 효율적인 의사결정을 내릴 수 있는 근거로 활용된다는 점에서 중요하게 인식되고 있다. 신규 시장의 수요를 예측하기 위해 다양한 시장성장모형이 개발되어 왔다. 이런 모형들은 일반적으로 시장의 크기 변화의 동인을 신기술 확산으로 보고 소비자인 개인에게 기술이 확산되는 과정을 통해 시장 크기가 변하는 과정을 확산모형으로 구현하게 된다. 그러나, 시장이 형성된 직후에는 수요 관측치의 부족으로 인해 혁신계수, 모방계수와 같은 예측모형의 모수를 정확하게 추정하는 것이 쉽지 않다. 이런 경우, 전문가의 판단 하에 예측하고자 하는 시장과 유사한 시장을 결정하고 이를 참고하여 모수를 추정하게 되는데, 어떤 시장을 유사하다고 판단하느냐에 따라 성장모형은 크게 달라지게 되므로, 정확한 예측을 위해서는 유사 시장을 찾는 것은 매우 중요하다. 그러나, 이런 방식은 직관과 경험이라는 정성적 판단에 크게 의존함으로써 일관성이 떨어질 수밖에 없으며, 결국, 만족할 만한 수준의 결과를 얻기 힘들다는 단점을 지닌다. 이런 정성적 방법은 유사도가 더 높은 시장을 누락시키고 유사도가 낮은 시장을 선택하는 오류를 일으킬 수 있다. 이런 이유로, 본 연구는 신규 시장의 모수를 추정하기 위해 필요한 유사시장을 누락 없이 효과적으로 찾아낼 수 있는 사례기반 전문가 시스템을 설계하고자 수행되었다. 제안된 모형은 데이터 마이닝의 군집분석 기법과 추천 시스템의 내용 기반 필터링 방법론을 기반으로 전문가 시스템으로 구현되었다. 본 연구에서 개발된 시스템의 유용성을 확인하고자 정보통신분야 시장의 모수를 추정하는 실험을 실시하였다. 전문가를 대상으로 실시된 실험에서, 시스템을 사용한 모수의 추정치가 시스템을 사용하지 않았을 때와 비교하여 실제 모수와 더 가까움을 보임으로써 시스템의 유용성을 증명하였다.
스마트 기기의 등장 후 웹툰을 스마트폰으로 보는 독자가 증가하게 되면서, 스마트툰, 효과툰, 컷툰, 더빙툰, 무빙툰, AR툰, VR툰, 인터랙션 툰 등 다양한 첨단기술이 결합된 기술 융합형 웹툰들이 선보이고 있다. 그러나 이에 대한 연구는 멀티미디어 기술 융합 유형과 사례 제시, 연출 효과와 그에 따른 문제점 제시 정도로, 만화와 기술과의 융합이 독자의 만화 읽기와 몰입에 어떤 영향을 끼치는지에 대한 논의는 없었다. 그래서 본 연구에서는 몰입의 관점에서 만화만의 독특한 몰입방식을 알아보고, 기술 융합형 웹툰들이 시도한 몰입 양상과 문제점을 유형별로 분석해보았다. 또한 이를 바탕으로 최근 화제가 되고 있는 인터랙션 툰 <마주쳤다>의 인터랙션 요소와 몰입 양상을 분석해 봄으로써 첨단 기술을 통해 새롭게 시도 되고 있는 인터랙션 요소들이 웹툰의 몰입에 미치는 긍정적 효과와 한계점에 대해 논하였다. 몰입의 관점에서 기술 융합형 웹툰을 유형별로 분석해보면, 효과툰은 멀티미디어 효과가 과하게 사용될 경우 정보의 과부하를 일으켜 몰입을 방해하였다. 스마트 모바일 기기의 가로 읽기 방식에 맞춰 칸에 움직임을 부여한 스마트툰은 그 시도는 좋았으나, 독자의 능동적인 만화 읽기를 방해하여 몰입감을 떨어트렸다. VR 기기를 이용해 독자가 직접 웹툰 세계를 탐색하도록 한 VR툰 역시 웹툰의 세로 연출을 극복하려는 시도는 좋았으나, 주의 집중을 분산시킴으로써 만화의 몰입을 저해하였다. 만화 읽기 방식의 편이성만을 중시한 무빙툰은 독자의 만화 읽기의 자율성을 침해함으로써 몰입을 방해하는 요소로 작용하고 있다. 반면 하일권의 인터랙션 툰 <마주쳤다>는 얼굴인식 기술, 증강현실 기술, 360도 파노라마 기술, 햅틱기술 등 웹툰에 다양한 첨단 기술을 접목하여, 독자가 웹툰 캐릭터와의 관계에서 친밀감을 형성하고, 독자 스스로가 주인공과 동일시되어 캐릭터와 상호작용함으로써 몰입을 유도하는데 성공하고 있다. 다만, 작품 후반부에 나타나는 기술의 남용과 이를 위한 무리한 상황 연출, 지루한 스토리 전개 등이 한계점으로 남는다.
소셜 네트워크 서비스(SNS; social network service)의 발전과 확산으로 사람들은 타인의 정보를 시간과 장소에 구애 받지 않고 쉽게 공유할 수 있게 되었고, 타인과의 관계형성 또한 더욱 쉽고 빠른 방법으로 가능하게 되었다. 특히 페이스북 같은 SNS는 광범위한 사용성과 빠른 확산성과 함께, 타인과의 풍부한 사회비교 기회를 갖게 한다. 본 연구는 소셜 미디어에 기반한 사회비교 노출이 사용자의 부정적인 감정과 SNS의 사용중단 의도에 끼치는 영향을 실증적으로 탐구하는데 그 목적이 있다. 먼저, 본 연구는 SNS 사용자의 사회비교 활동이 크게 3가지로 나뉜다고 보았는데, 가장먼저 본인의 위치와 비슷하다고 느끼는 상대와 자신을 평가하려는 자기평가욕구에서 시작하는 유사비교활동, 본인보다 더 열등한 사람과 비교함으로써 자신의 정서가 다치지 않게 하려는 자기방어욕구에서 비롯되는 하향비교활동, 마지막으로 자신보다 더 나은 상대와 비교함으로써 자신을 발전시키고자 하는 자기향상욕구와 관련되는 상향비교활동이다. 이러한 사회비교활동들은 사람들이 매일매일 SNS에 지나치게 의존하고 상향비교, 유사비교와 관련된 정보들에 자주 노출됨으로써, 빈번하게 발생될 수 있으며, 이는 결국 부정적인 감정들과 피로감으로 이어져 SNS 중단의도로 이어질 수 있다는 것이다. 본 연구는 209명의 SNS 사용자들을 대상으로 한 설문조사를 통하여 SNS 이용자들이 타인과 상향비교와 유사비교를 할수록 부정적 감정을 느끼게 되어, 이러한 감정들이 결국 SNS에 대한 부정적 태도(Attitude)를 거쳐 SNS 이용중단(Behavior)에 이르게 된다는 것을 밝히고자하였다. PLS 분석결과, SNS 사용 중 일어나는 사회비교와 타인탐색위주의 SNS의 사용은 사용자들에게 부정적인 감정들을 느끼게 하며 이 부정적인 감정들이 SNS 이용중단 의도에 통계적으로 유의한 영향을 주는 것으로 나타났다. 본 연구는 SNS 이용중단 의도에 관한 연구를 사회 심리학적 관점으로 확대하여 실증적 연구를 진행했다는 점과 상향비교 또는 유사비교가 부정적인 영향을 끼칠 수 있다는 기존의 심리학연구결과를 SNS 환경에서 실증적으로 증명하였다는 점에서 그 학술적 의의가 크다고 할 수 있다.
본 논문은 디지털 미디어의 마케팅적 활용에 따른 소비자가 경험하는 체험에 대한 사례 연구이다. 최근 다양한 매체들의 융합으로 새로운 콘텐츠들이 가능해지고 있다. 디지털 세상에서 새로운 콘텐츠들로 소비자들에게 접근하는 것은 선택이 아닌 필수인 상황에서 다양한 디지털 미디어를 활용하여 소비자에게 새로운 영향을 주어야 한다. 최근 소비자들은 수동적으로 전달받는 것이 아닌 직접 능동적으로 참여하는 방식을 선호하고 있기에 디지털 미디어를 활용하여 소비자의 체험을 극대화할 필요가 있다. 이에 본 연구에서는 디지털 미디어를 마케팅적으로 활용한 소비자 체험 활용에 대한 사례들을 살펴보고 체험 마케팅적인 측면에서 사례 분석을 진행한다. 번 슈미트(Bernd H. Schmitt)가 제시한 체험 마케팅의 다섯 가지 요소들과 디지털 미디어적 요소들을 어떻게 복합적으로 이용하였는지를 확인해본다. 뷰티 브랜드에서 활용하고 있는 디지털 마케팅의 사례 중 다양한 체험 요소를 갖고 있으며 대중적으로도 잘 알려진 로레알의 Make-up Genius, 입생로랑 뷰티의 Google Glass Tutorials 그리고 버버리 뷰티박스의 Digital Runway Bar를 중심으로 연구를 진행하였다. 이를 사례 표본으로 하여 번 슈미트의 전략적 체험 모듈인 감각(Sense), 감성(Feel), 인지(Think), 행동(Act), 그리고 관계(Relate)를 기준으로 유료 미디어(paid media), 자발적 확산 미디어(earned media), 기업 소유 미디어(owned media)의 3가지로 분류하였다. 사례를 통해 AR(Augmented Reality) 기술을 활용하여 사진 촬영 및 주변 공유, 제품의 구매까지 서비스들이 유기적으로 연결되어 다양한 고객 체험이 하나의 서비스를 이루도록 하거나 구글 글라스를 활용하여 기존의 일회성 이벤트에서 고객 맞춤형 콘텐츠로 서비스의 성격이 진화하는 등 디지털 미디어 기술과 디지털 미디어의 마케팅적 요소들의 복합적 활용으로 감각, 감성, 인지, 행동, 관계의 다양한 고객 체험을 이끌어 내고 있음을 확인할 수 있었다. 이처럼 각 사례들이 어떤 디지털 미디어를 활용하였고 체험 마케팅의 요소들을 어떻게 복합적으로 이용하였는지를 확인해보는 과정을 통해 현재의 디지털 마케팅을 이해하고 향후 효율적인 디지털 마케팅을 연구하기 위한 초석으로 삼을 수 있을 것이라는 점에서 본 연구의 의의가 있다.
본 연구의 목적은 유럽연합에서 개발한 세계 대학 평가시스템 '유-멀티랭크(U-Multirank)'를 통해 대학의 실제 경쟁력과 질적 수준을 재검토해야 할 필요성 그리고 세계 대학 순위평가 시스템이라는 개념을 재정립해야 필요성을 역설하는 데 있다. 지금까지 널리 활용되고 있는 THE나 ARWU와 같은 세계 대학 순위평가 시스템은 연구중심 종합대학에 초점을 맞추어 정량화된 평가 방식을 취해왔다. 그러나 이러한 평가 방식은 세계 고등교육 분야에서 대학과 전공 간의 서열화를 조장하는 동시에 소규모 지방대학이나 유사 고등교육기관을 소외시키는 결과를 낳았다. 더구나 대학 순위평가제의 본래 취지가 잠재적 대학 편 입학자들에게 실질적이고 포괄적인 정보를 제공함으로써 그들 개개인의 교육 이상과 요구에 부합하는 고등교육기관을 선택할 수 있도록 돕는데 있다는 점을 도외시한채, 기존의 정량화된 평가 방식과 순위발표는 결코 도표 위의 수치로 환원될 수 없는 복잡다양한 교육현실을 축소시키는 문제마저 초래하였다. 유럽연합 교육위원회는 세계 대학 평가시스템의 이러한 결함을 보완하고 유럽 사회에 필요한 고등인재를 길러내기 위해 2009년부터 2011년까지 타당성 조사와 파일럿 테스트를 거쳐 '유-멀티랭크'라는 새로운 세계 대학 평가시스템을 개발하였다. THE나 ARWU 등과 차별화되는 유-멀티랭크의 특징은 사용자 중심성, 다차원성, 개별성이라는 원칙 아래 대학에 관한 질적 평가 방식을 취한다는 데 있다. 이 시스템은 모바일 운영체계를 기반으로 설계되어 디지털 글로벌 시대에 최적화된 세계 대학 평가시스템의 본보기를 제시할 뿐 아니라, 사용자의 접근성과 참여폭을 확장시킴으로써 시스템 자체의 무한한 자기검증과 진화 가능성까지 열어놓고 있다. 이는 대학 평가시스템의 투명성 확보와 관련해 대단히 중요한 장점이다. 무엇보다 유-멀티랭크의 사용자 중심 모바일 운영체계는 미국대학 중심의 기존 세계 대학리그에 국내 외의 다양한 대학들을 노출시킴으로써 공정한 질적 경쟁의 장을 마련해준다는 점에서 우리 대학들의 글로벌 경쟁력 강화를 위해서도 희망을 걸만한 대안이라 생각된다. 유-멀티랭크를 통한 세계 대학 평가시스템의 재개념화 가능성을 타진하기 위해 본 연구는 Edgar Morin의 복잡성 사고 이론과 Karl Popper의 과학철학에 기댄 인식론적 접근을 시도하고 있다.
인터넷의 발달로, 소비자들은 이커머스에서 손쉽게 상품 정보를 확인한다. 이때 활용되는 상품 리뷰는 사용자 경험을 토대로 작성되어 구매의사결정의 효율성을 높일 뿐만 아니라 상품 개발에 도움을 주기도 한다. 하지만, 방대한 양의 상품 리뷰에서 관심있는 평가차원의 세부내용을 파악하는 데에는 많은 시간과 노력이 소비된다. 예를 들어, 노트북을 구매하려는 소비자들은 성능, 무게, 디자인과 같은 평가차원에 대해 각 차원별로 비교 상품의 평가를 확인하고자 한다. 따라서 본 논문에서는 상품 리뷰에서 다차원 상품평가 점수를 자동적으로 생성하는 방안을 제안하고자 한다. 본 연구에서 제시하는 방안은 크게 2단계로 구성된다. 사전준비 단계와 개별상품평가 단계로, 대분류 상품군 리뷰를 토대로 사전에 생성된 차원분류모델과 감성분석모델이 개별상품의 리뷰를 분석하게 된다. 차원분류모델은 워드임베딩과 연관분석을 결합함으로써 기존 연구에서 차원과 단어들의 관련성을 찾기 위한 워드임베딩 방식이 문장 내 단어의 위치만을 본다는 한계를 보완한다. 감성분석모델은 정확한 극성 판단을 위해 구(phrase) 단위로 긍부정이 태깅된 학습데이터를 구성하여 CNN 모델을 생성한다. 이를 통해, 개별상품평가 단계에서는 구 단위의 리뷰에 준비된 모델들을 적용하고 평가차원별로 종합함으로써 다차원 평가점수를 얻을 수 있다. 본 논문의 실험에서는 대분류 상품군 리뷰 약 260,000건으로 평가모델을 구성하고, S사와 L사의 노트북 리뷰 각 1,011건과 1,062건을 실험데이터로 활용한다. 차원분류모델은 구로 분해한 개별상품 리뷰를 6개 평가차원으로 분류했고, 기존 워드임베딩 방식보다 연관분석을 결합한 모델의 정확도가 13.7% 증가했음을 볼 수 있었다. 감성분석모델은 문장보다 구 단위로 학습한 모델이 평가차원을 면밀히 분석함으로써 29.4% 더 높은 정확도를 보임을 확인했다. 본 연구를 통해 판매자, 소비자 모두가 상품의 다차원적 비교가 가능하다는 점에서 구매 및 상품 개발에 효율적인 의사결정을 기대할 수 있다.
질의응답 시스템은 크게 사용자의 질의를 분석하는 방법인 질의 분석과 문서 내에서 적합한 정답을 추출하는 방법인 정답 추출로 이루어지며, 두 방법에 대한 다양한 연구들이 진행되고 있다. 본 연구에서는 문장의 의존 구문 분석 결과를 이용하여 질의응답 시스템 내 정답 추출의 성능 향상을 위한 연구를 진행한다. 정답 추출의 성능을 높이기 위해서는 문장의 문법적인 정보를 정확하게 반영할 필요가 있다. 한국어의 경우 어순 구조가 자유롭고 문장의 구성 성분 생략이 빈번하기 때문에 의존 문법에 기반한 의존 구문 분석이 적합하다. 기존에 의존 구문 분석을 질의응답 시스템에 반영했던 연구들은 구문 관계 정보나 구문 형식의 유사도를 정의하는 메트릭을 사전에 정의해야 한다는 한계점이 있었다. 또 문장의 의존 구문 분석 결과를 트리 형태로 표현한 후 트리 편집 거리를 계산하여 문장의 유사도를 계산한 연구도 있었는데 이는 알고리즘의 연산량이 크다는 한계점이 존재한다. 본 연구에서는 구문 패턴에 대한 정보를 사전에 정의하지 않고 정답 후보 문장을 그래프로 나타낸 후 그래프 정보를 효과적으로 반영할 수 있는 Graph2Vec을 활용하여 입력 자질을 생성하였고, 이를 정답 추출모델의 입력에 추가하여 정답 추출 성능 개선을 시도하였다. 의존 그래프를 생성하는 단계에서 의존 관계의 방향성 고려 여부와 노드 간 최대 경로의 길이를 다양하게 설정하며 자질을 생성하였고, 각각의 경우에 따른 정답추출 성능을 비교하였다. 본 연구에서는 정답 후보 문장들의 신뢰성을 위하여 웹 검색 소스를 한국어 위키백과, 네이버 지식백과, 네이버 뉴스로 제한하여 해당 문서에서 기존의 정답 추출 모델보다 성능이 향상함을 입증하였다. 본 연구의 실험을 통하여 의존 구문 분석 결과로 생성한 자질이 정답 추출 시스템 성능 향상에 기여한다는 것을 확인하였고 해당 자질을 정답 추출 시스템뿐만 아니라 감성 분석이나 개체명 인식과 같은 다양한 자연어 처리 분야에 활용 될 수 있을 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.