• Title/Summary/Keyword: information region classification

Search Result 375, Processing Time 0.025 seconds

Feature Ranking for Detection of Neuro-degeneration and Vascular Dementia in micro-Raman spectra of Platelet (특징 순위 방법을 이용한 혈소판 라만 스펙트럼에서 퇴행성 뇌신경질환과 혈관성 인지증 분류)

  • Park, Aa-Ron;Baek, Sung-June
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.4
    • /
    • pp.21-26
    • /
    • 2011
  • Feature ranking is useful to gain knowledge of data and identify relevant features. In this study, we proposed a use of feature ranking for classification of neuro-degeneration and vascular dementia in micro-Raman spectra of platelet. The entire region of the spectrum is divided into local region including several peaks, followed by Gaussian curve fitting method in the region to be modeled. Local minima select from the subregion and then remove the background based on the position by using interpolation method. After preprocessing steps, significant features were selected by feature ranking method to improve the classification accuracy and the computational complexity of classification system. PCA (principal component analysis) transform the selected features and the overall features that is used classification with the number of principal components. These were classified as MAP (maximum a posteriori) and it compared with classification result using overall features. In all experiments, the computational complexity of the classification system was remarkably reduced and the classification accuracy was partially increased. Particularly, the proposed method increased the classification accuracy in the experiment classifying the Parkinson's disease and normal with the average 1.7 %. From the result, it confirmed that proposed method could be efficiently used in the classification system of the neuro-degenerative disease and vascular dementia of platelet.

A Comparative Performance Analysis of Blocking Artifact Reduction Algorithms (블록화 현상 제거 알고리듬의 성능 비교 분석)

  • 소현주;장익훈김남철
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.907-910
    • /
    • 1998
  • In this paper, we present a comparative performance analysis of several blocking artifact reduction algorithms. For the performance analysis, we propose a block boundary region classification algorithm which classifies each horizontal and vertical block boundary into four regions using brightness change near the block boundary. The PSNR performance of each algorithm is compared. The MSE according to each block boundary region is also compared. Experimental results show that the wavelet transform based blocking artifact reduction algorithms have better performance over the other methods.

  • PDF

Data Acquisition System Using the Second Binary Code (2차원 부호를 이용한 정보 획득 시스템)

  • Kim, In-Kyeom
    • The Journal of Information Technology
    • /
    • v.6 no.1
    • /
    • pp.71-84
    • /
    • 2003
  • In this paper, it is presented the efficient system for data recognition using the proposed binary code images. The proposed algorithm finds the position of binary image. Through the process of the block region classification, it is classified each block with the edge region using the value of gray level only. Each block region is divided horizontal and vertical edge region. If horizontal edge region blocks are classified over six blocks in any region, the proposed algorithm should search the vertical edge region in the start point of the horizontal edge region. If vertical edge region blocks were found over ten blocks in vertical region, the code image would found. Practical code region is acquired from the rate of the total edge region that is computed from the binary image that is processed with the average value. In case of the wrong rate, it is restarted the code search in the point after start point and the total process is followed. It has a short time than the before process time because it had classified block information. The block processing is faster thant the total process. The proposed system acquires the image from the digital camera and makes binary image from the acquired image. Finally, the proposed system extracts various characters from the binary image.

  • PDF

A Hybrid Proposed Framework for Object Detection and Classification

  • Aamir, Muhammad;Pu, Yi-Fei;Rahman, Ziaur;Abro, Waheed Ahmed;Naeem, Hamad;Ullah, Farhan;Badr, Aymen Mudheher
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1176-1194
    • /
    • 2018
  • The object classification using the images' contents is a big challenge in computer vision. The superpixels' information can be used to detect and classify objects in an image based on locations. In this paper, we proposed a methodology to detect and classify the image's pixels' locations using enhanced bag of words (BOW). It calculates the initial positions of each segment of an image using superpixels and then ranks it according to the region score. Further, this information is used to extract local and global features using a hybrid approach of Scale Invariant Feature Transform (SIFT) and GIST, respectively. To enhance the classification accuracy, the feature fusion technique is applied to combine local and global features vectors through weight parameter. The support vector machine classifier is a supervised algorithm is used for classification in order to analyze the proposed methodology. The Pascal Visual Object Classes Challenge 2007 (VOC2007) dataset is used in the experiment to test the results. The proposed approach gave the results in high-quality class for independent objects' locations with a mean average best overlap (MABO) of 0.833 at 1,500 locations resulting in a better detection rate. The results are compared with previous approaches and it is proved that it gave the better classification results for the non-rigid classes.

The Region Analysis of Document Images Based on One Dimensional Median Filter (1차원 메디안 필터 기반 문서영상 영역해석)

  • 박승호;장대근;황찬식
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.3
    • /
    • pp.194-202
    • /
    • 2003
  • To convert printed images into electronic ones automatically, it requires region analysis of document images and character recognition. In these, regional analysis segments document image into detailed regions and classifies thee regions into the types of text, picture, table and so on. But it is difficult to classify the text and the picture exactly, because the size, density and complexity of pixel distribution of some of these are similar. Thu, misclassification in region analysis is the main reason that makes automatic conversion difficult. In this paper, we propose region analysis method that segments document image into text and picture regions. The proposed method solves the referred problems using one dimensional median filter based method in text and picture classification. And the misclassification problems of boldface texts and picture regions like graphs or tables, caused by using median filtering, are solved by using of skin peeling filter and maximal text length. The performance, therefore, is better than previous methods containing commercial softwares.

Satellite Image Classification Based on Color and Texture Feature Vectors (칼라 및 질감 속성 벡터를 이용한 위성영상의 분류)

  • 곽장호;김준철;이준환
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.3
    • /
    • pp.183-194
    • /
    • 1999
  • The Brightness, color and texture included in a multispectral satellite data are used as important factors to analyze and to apply the image data for a proper use. One of the most significant process in the satellite data analysis using texture or color information is to extract features effectively expressing the information of original image. It was described in this paper that six features were introduced to extract useful features from the analysis of the satellite data, and also a classification network using the back-propagation neural network was constructed to evaluate the classification ability of each vector feature in SPOT imagery. The vector features were adopted from the training set selection for the interesting region, and applied to the classification process. The classification results showed that each vector feature contained many merits and demerits depending on each vector's characteristics, and each vector had compatible classification ability. Therefore, it is expected that the color and texture features are effectively used not only in the classification process of satellite imagery, but in various image classification and application fields.

Classification Method of Harmful Image Content Rates in Internet (인터넷에서의 유해 이미지 컨텐츠 등급 분류 기법)

  • Nam, Taek-Yong;Jeong, Chi-Yoon;Han, Chi-Moon
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.3
    • /
    • pp.318-326
    • /
    • 2005
  • This paper presents the image feature extraction method and the image classification technique to select the harmful image flowed from the Internet by grade of image contents such as harmlessness, sex-appealing, harmfulness (nude), serious harmfulness (adult) by the characteristic of the image. In this paper, we suggest skin area detection technique to recognize whether an input image is harmful or not. We also propose the ROI detection algorithm that establishes region of interest to reduce some noise and extracts harmful degree effectively and defines the characteristics in the ROI area inside. And this paper suggests the multiple-SVM training method that creates the image classification model to select as 4 types of class defined above. This paper presents the multiple-SVM classification algorithm that categorizes harmful grade of input data with suggested classification model. We suggest the skin likelihood image made of the shape information of the skin area image and the color information of the skin ratio image specially. And we propose the image feature vector to use in the characteristic category at a course of traininB resizing the skin likelihood image. Finally, this paper presents the performance evaluation of experiment result, and proves the suitability of grading image using image feature classification algorithm.

Evaluation of Possibility for the Classification of River Habitat Using Imagery Information (영상정보를 활용한 하천 서식처 분류 가능성 평가)

  • Lee, Geun-Sang;Lee, Hyun-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.91-102
    • /
    • 2012
  • As the basis of the environmental ecological river management, this research developed a method of habitat classification using imagery information to understand a distribution characteristics of fish living in a natural river. First, topographic survey and investigation of discharge and water temperature were carried out to analyze hydraulic characteristics of fish habitat, and the unmanned aerial photography was applied to acquire river imagery at the observation time. Riffle, pool, and glide regions were selected as river habitat to analyze fish distribution characteristics. Analysis showed that the standard deviation of RGB on the riffle is higher than pool and glide because of fast stream flow. From the classification accuracy estimation on riffle region according to resolution and kernel size using the characteristics of standard deviation of RGB, the highest classification accuracy was 77.17% for resolution with 30cm and kernel size with 11. As the result of water temperature observation on pool and glide using infrared camera, they were $19.6{\sim}21.3^{\circ}C$ and $15.5{\sim}16.5^{\circ}C$ respectively with the differences of $4{\sim}5^{\circ}C$. Therefore it is possible to classify pool and glide region using the infrared photography information. The habitat classification to figure out fish distribution can be carried out more efficiently, if unmanned aerial photography system with RGB and infrared band is applied.

Case Studies Regarding the Classification of Public Caves (공개동굴의 유형분류에 관한 사례연구)

  • Hong, Hyun-Chul
    • Journal of the Speleological Society of Korea
    • /
    • no.93
    • /
    • pp.13-25
    • /
    • 2009
  • This study, which includes case studies that provide information of cave tour resources, considered a variety of selected variables of the internal and external parts of caves with the expanded factors of the academic classification in caves. It uses the cluster analysis, one of the multivariate analysis techniques, and applied the results for review. As a result, public caves can present multiple classification criteria according to the factors of the surrounding area's human environment. The result, classified by the region in public caves, is derived from this study.

An ADHD Diagnostic Approach Based on Binary-Coded Genetic Algorithm and Extreme Learning Machine

  • Sachnev, Vasily;Suresh, Sundaram
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.4
    • /
    • pp.111-117
    • /
    • 2016
  • An accurate approach for diagnosis of attention deficit hyperactivity disorder (ADHD) is presented in this paper. The presented technique efficiently classifies three subtypes of ADHD (ADHD-C, ADHD-H, ADHD-I) and typically developing control (TDC) by using only structural magnetic resonance imaging (MRI). The research examines structural MRI of the hippocampus from the ADHD-200 database. Each available MRI has been processed by a region-of-interest (ROI) to build a set of features for further analysis. The presented ADHD diagnostic approach unifies feature selection and classification techniques. The feature selection technique based on the proposed binary-coded genetic algorithm searches for an optimal subset of features extracted from the hippocampus. The classification technique uses a chosen optimal subset of features for accurate classification of three subtypes of ADHD and TDC. In this study, the famous Extreme Learning Machine is used as a classification technique. Experimental results clearly indicate that the presented BCGA-ELM (binary-coded genetic algorithm coupled with Extreme Learning Machine) efficiently classifies TDC and three subtypes of ADHD and outperforms existing techniques.