• Title/Summary/Keyword: information framework

Search Result 6,970, Processing Time 0.037 seconds

A Proposal for the Design of Augmented Reality Reading Activity Application and Class Model Based On Nuri Curriculum (누리과정을 기반으로 한 증강현실 독후활동 애플리케이션 및 수업 모형 설계 제안)

  • Seo-Young Kim;Tae-Woo Kim;Kyung-Up Lee;Yu-Bin Joe;Jung-Yi Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.355-360
    • /
    • 2023
  • Recently, with the development of digital, children are exposed to a lot of media media. Reading activity decreases, making it difficult to acquire information from books or organize and remember acquired information. Since education with augmented reality increases children's participation and immersion in learning, we proposed a reading activity application with augmented reality technology to increase children's reading interest and creativity. In addition, based on the five nurturing processes, we designed a play-oriented reading activity for the application. In addition to the application suggestions, we designed a play-centered lesson model so that it can be used in actual lessons. In order to analyze the conceptual thinking framework according to the lesson model design, we visited an actual daycare center and conducted a class attended by an expert. Experts who participated were asked to fill out a pre-produced questionnaire to review the suitability of the reading activity class model and operation, and the feasibility was examined. Our lesson model design was based on limited book content, and due to ethical concerns, large-scale experiments with children could not be conducted, so the results of the study are not representative of the whole. However, it is significant that the possibility of running a new reading activity class based on the Nuri course has been examined and proposed.

The Prediction of Cryptocurrency Prices Using eXplainable Artificial Intelligence based on Deep Learning (설명 가능한 인공지능과 CNN을 활용한 암호화폐 가격 등락 예측모형)

  • Taeho Hong;Jonggwan Won;Eunmi Kim;Minsu Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.129-148
    • /
    • 2023
  • Bitcoin is a blockchain technology-based digital currency that has been recognized as a representative cryptocurrency and a financial investment asset. Due to its highly volatile nature, Bitcoin has gained a lot of attention from investors and the public. Based on this popularity, numerous studies have been conducted on price and trend prediction using machine learning and deep learning. This study employed LSTM (Long Short Term Memory) and CNN (Convolutional Neural Networks), which have shown potential for predictive performance in the finance domain, to enhance the classification accuracy in Bitcoin price trend prediction. XAI(eXplainable Artificial Intelligence) techniques were applied to the predictive model to enhance its explainability and interpretability by providing a comprehensive explanation of the model. In the empirical experiment, CNN was applied to technical indicators and Google trend data to build a Bitcoin price trend prediction model, and the CNN model using both technical indicators and Google trend data clearly outperformed the other models using neural networks, SVM, and LSTM. Then SHAP(Shapley Additive exPlanations) was applied to the predictive model to obtain explanations about the output values. Important prediction drivers in input variables were extracted through global interpretation, and the interpretation of the predictive model's decision process for each instance was suggested through local interpretation. The results show that our proposed research framework demonstrates both improved classification accuracy and explainability by using CNN, Google trend data, and SHAP.

Comparative analysis of deep learning performance for Python and C# using Keras (Keras를 이용한 Python과 C#의 딥러닝 성능 비교 분석)

  • Lee, Sung-jin;Moon, Sang-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.360-363
    • /
    • 2022
  • According to the 2018 Kaggle ML & DS Survey, among the proportions of frameworks for machine learning and data science, TensorFlow and Keras each account for 41.82%. It was found to be 34.09%, and in the case of development programming, it is confirmed that about 82% use Python. A significant number of machine learning and deep learning structures utilize the Keras framework and Python, but in the case of Python, distribution and execution are limited to the Python script environment due to the script language, so it is judged that it is difficult to operate in various environments. This paper implemented a machine learning and deep learning system using C# and Keras running in Visual Studio 2019. Using the Mnist dataset, 100 tests were performed in Python 3.8,2 and C# .NET 5.0 environments, and the minimum time for Python was 1.86 seconds, the maximum time was 2.38 seconds, and the average time was 1.98 seconds. Time 1.78 seconds, maximum time 2.11 seconds, average time 1.85 seconds, total time 37.02 seconds. As a result of the experiment, the performance of C# improved by about 6% compared to Python, and it is expected that the utilization will be high because executable files can be extracted.

  • PDF

Development of Cloud-based VTS Integration Platform for IVEF Service Implementation (IVEF 서비스 구현을 위한 클라우드 기반 VTS 통합 플랫폼 개발)

  • Yunja Yoo;Dae-Won Kim;Chae-Uk Song;Jung-Jin Lee;Sang-Gil Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.893-901
    • /
    • 2023
  • The International Association Marine Aids to Navigation and Lighthouse Authorities (IALA) proposed guidelines for VTS manual operation in 2016 for safe and efficient operation of ship. The Korea Coast Guard (KCG) established and operated 19 VTS centers in ports and coastal waters across the country by 2022 based on the IALA VTS manual and VTS operator's education and training guidelines. In addition, IALA proposed the Inter-VTS Exchange Format (IVEF) Service recommendation (V-145), a standard for data exchange between VTS, in 2011 for efficient e-Navigation system services and safe and efficient VTS service support by VTS authorities. The IVEF service in a common framework for ship information exchange, and it presents seven basic IVEF service (BISs) models. VTS service providers can provide safer and more efficient VTS services by sharing VTS information on joint area using IVEF standards. Based on the BIS data, interaction, and interfacing models, this paper introduced the development of the cloud-based VTS integration services performed by the KCG and the results of the VTS integration platform test-bed for IVEF service implementation. In addition, the results of establishing a cloud VTS integrated platform test-bed for the implementation of IVEF service and implementing the main functions of IVEF service were presented.

Empirical correlation for in-situ deformation modulus of sedimentary rock slope mass and support system recommendation using the Qslope method

  • Yimin Mao;Mohammad Azarafza;Masoud Hajialilue Bonab;Marc Bascompta;Yaser A. Nanehkaran
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.539-554
    • /
    • 2023
  • This article is dedicated to the pursuit of establishing a robust empirical relationship that allows for the estimation of in-situ modulus of deformations (Em and Gm) within sedimentary rock slope masses through the utilization of Qslope values. To achieve this significant objective, an expansive and thorough methodology is employed, encompassing a comprehensive field survey, meticulous sample collection, and rigorous laboratory testing. The study sources a total of 26 specimens from five distinct locations within the South Pars (known as Assalouyeh) region, ensuring a representative dataset for robust correlations. The results of this extensive analysis reveal compelling empirical connections between Em, geomechanical characteristics of the rock mass, and the calculated Qslope values. Specifically, these relationships are expressed as follows: Em = 2.859 Qslope + 4.628 (R2 = 0.554), and Gm = 1.856 Qslope + 3.008 (R2 = 0.524). Moreover, the study unravels intriguing insights into the interplay between in-situ deformation moduli and the widely utilized Rock Mass Rating (RMR) computations, leading to the formulation of equations that facilitate predictions: RMR = 18.12 Em0.460 (R2 = 0.798) and RMR = 22.09 Gm0.460 (R2 = 0.766). Beyond these correlations, the study delves into the intricate relationship between RMR and Rock Quality Designation (RQD) with Qslope values. The findings elucidate the following relationships: RMR = 34.05e0.33Qslope (R2 = 0.712) and RQD = 31.42e0.549Qslope (R2 = 0.902). Furthermore, leveraging the insights garnered from this comprehensive analysis, the study offers an empirically derived support system tailored to the distinct characteristics of discontinuous rock slopes, grounded firmly within the framework of the Qslope methodology. This holistic approach contributes significantly to advancing the understanding of sedimentary rock slope stability and provides valuable tools for informed engineering decisions.

Spontaneous Speech Emotion Recognition Based On Spectrogram With Convolutional Neural Network (CNN 기반 스펙트로그램을 이용한 자유발화 음성감정인식)

  • Guiyoung Son;Soonil Kwon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.6
    • /
    • pp.284-290
    • /
    • 2024
  • Speech emotion recognition (SER) is a technique that is used to analyze the speaker's voice patterns, including vibration, intensity, and tone, to determine their emotional state. There has been an increase in interest in artificial intelligence (AI) techniques, which are now widely used in medicine, education, industry, and the military. Nevertheless, existing researchers have attained impressive results by utilizing acted-out speech from skilled actors in a controlled environment for various scenarios. In particular, there is a mismatch between acted and spontaneous speech since acted speech includes more explicit emotional expressions than spontaneous speech. For this reason, spontaneous speech-emotion recognition remains a challenging task. This paper aims to conduct emotion recognition and improve performance using spontaneous speech data. To this end, we implement deep learning-based speech emotion recognition using the VGG (Visual Geometry Group) after converting 1-dimensional audio signals into a 2-dimensional spectrogram image. The experimental evaluations are performed on the Korean spontaneous emotional speech database from AI-Hub, consisting of 7 emotions, i.e., joy, love, anger, fear, sadness, surprise, and neutral. As a result, we achieved an average accuracy of 83.5% and 73.0% for adults and young people using a time-frequency 2-dimension spectrogram, respectively. In conclusion, our findings demonstrated that the suggested framework outperformed current state-of-the-art techniques for spontaneous speech and showed a promising performance despite the difficulty in quantifying spontaneous speech emotional expression.

Cox Model Improvement Using Residual Blocks in Neural Networks: A Study on the Predictive Model of Cervical Cancer Mortality (신경망 내 잔여 블록을 활용한 콕스 모델 개선: 자궁경부암 사망률 예측모형 연구)

  • Nang Kyeong Lee;Joo Young Kim;Ji Soo Tak;Hyeong Rok Lee;Hyun Ji Jeon;Jee Myung Yang;Seung Won Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.6
    • /
    • pp.260-268
    • /
    • 2024
  • Cervical cancer is the fourth most common cancer in women worldwide, and more than 604,000 new cases were reported in 2020 alone, resulting in approximately 341,831 deaths. The Cox regression model is a major model widely adopted in cancer research, but considering the existence of nonlinear associations, it faces limitations due to linear assumptions. To address this problem, this paper proposes ResSurvNet, a new model that improves the accuracy of cervical cancer mortality prediction using ResNet's residual learning framework. This model showed accuracy that outperforms the DNN, CPH, CoxLasso, Cox Gradient Boost, and RSF models compared in this study. As this model showed accuracy that outperformed the DNN, CPH, CoxLasso, Cox Gradient Boost, and RSF models compared in this study, this excellent predictive performance demonstrates great value in early diagnosis and treatment strategy establishment in the management of cervical cancer patients and represents significant progress in the field of survival analysis.

Comparison of Integrated Health and Welfare Service Provision Projects Centered on Medical Institutions (의료기관 중심 보건의료·복지 통합 서비스 제공 사업 비교)

  • Su-Jin Lee;Jong-Yeon Kim
    • Journal of agricultural medicine and community health
    • /
    • v.49 no.2
    • /
    • pp.132-145
    • /
    • 2024
  • Objectives: This study compares cases of Dalgubeol Health Care Project, 301 Network Project, and 3 for 1 Project based on program logic models to derive measures for promoting integrated healthcare and welfare services centered around medical institutions. Methods: From January to December 2021, information on the implementation systems and performance of each institution was collected. Data sources included prior academic research, project reports, operational guidelines, official press releases, media articles, and written surveys from project managers. A program logic model analysis framework was applied, structuring the information based on four elements: situation, input, activity, and output. Results: All three projects aimed to address the fragmentation of health and welfare services and medical blind spots. Despite similar multidisciplinary team compositions, differences existed in specific fields, recruitment scale, and employment types. Variations in funding sources led to differences in community collaboration, support methods, and future directions. There were discrepancies in the number of beneficiaries and medical treatments, with different results observed when comparing the actual number of people to input manpower and project cost per beneficiary. Conclusions: To design an integrated health and welfare service provision system centered on medical institutions, securing a stable funding mechanism and establishing an appropriate target population and service delivery system are crucial. Additionally, installing a dedicated department within the medical institution to link activities across various sectors, rather than outsourcing, is necessary. Ensuring appropriate recruitment and stable employment systems is needed. A comprehensive provision system offering services from mild to severe cases through public-private cooperation is suggested.

Understanding the Artificial Intelligence Business Ecosystem for Digital Transformation: A Multi-actor Network Perspective (디지털 트랜스포메이션을 위한 인공지능 비즈니스 생태계 연구: 다행위자 네트워크 관점에서)

  • Yoon Min Hwang;Sung Won Hong
    • Information Systems Review
    • /
    • v.21 no.4
    • /
    • pp.125-141
    • /
    • 2019
  • With the advent of deep learning technology, which is represented by AlphaGo, artificial intelligence (A.I.) has quickly emerged as a key theme of digital transformation to secure competitive advantage for businesses. In order to understand the trends of A.I. based digital transformation, a clear comprehension of the A.I. business ecosystem should precede. Therefore, this study analyzed the A.I. business ecosystem from the multi-actor network perspective and identified the A.I. platform strategy type. Within internal three layers of A.I. business ecosystem (infrastructure & hardware, software & application, service & data layers), this study identified four types of A.I. platform strategy (Tech. vertical × Biz. horizontal, Tech. vertical × Biz. vertical, Tech. horizontal × Biz. horizontal, Tech. horizontal × Biz. vertical). Then, outside of A.I. platform, this study presented five actors (users, investors, policy makers, consortiums & innovators, CSOs/NGOs) and their roles to support sustainable A.I. business ecosystem in symbiosis with human. This study identified A.I. business ecosystem framework and platform strategy type. The roles of government and academia to create a sustainable A.I. business ecosystem were also suggested. These results will help to find proper strategy direction of A.I. business ecosystem and digital transformation.

The Effect of Online Multiple Channel Marketing by Device Type (디바이스 유형을 고려한 온라인 멀티 채널 마케팅 효과)

  • Hajung Shin;Kihwan Nam
    • Information Systems Review
    • /
    • v.20 no.4
    • /
    • pp.59-78
    • /
    • 2018
  • With the advent of the various device types and marketing communication, customer's search and purchase behavior have become more complex and segmented. However, extant research on multichannel marketing effects of the purchase funnel has not reflected the specific features of device User Interface (UI) and User Experience (UX). In this study, we analyzed the marketing channel effects of multi-device shoppers using a unique click stream dataset from global online retailers. We examined device types that activate online shopping and compared the differences between marketing channels that promote visits. In addition, we estimated the direct and indirect effects on visits and purchase revenue through customer's accumulated experience and channel conversions. The findings indicate that the same customer selects a different marketing channel according to the device selection. These results can help retailers gain a better understanding of customers' decision-making process in multi-marketing channel environment and devise the optimal strategy taking into account various device types. Our empirical analyses yield business implications based on the significant results from global big data analytics and contribute academically meaningful theoretical framework using an economic model. We also provide strategic insights attributed to the practical value of an online marketing manager.