• Title/Summary/Keyword: influenza virus

Search Result 436, Processing Time 0.023 seconds

Influenza M1 Virus-Like Particles Consisting of Toxoplasma gondii Rhoptry Protein 4

  • Lee, Su-Hwa;Lee, Dong-Hun;Piao, Ying;Moon, Eun-Kyung;Quan, Fu-Shi
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.2
    • /
    • pp.143-148
    • /
    • 2017
  • Toxoplasma gondii infections occur throughout the world, and efforts are needed to develop various vaccine candidates expressing recombinant protein antigens. In this study, influenza matrix protein (M1) virus-like particles (VLPs) consisting of T. gondii rhoptry antigen 4 (ROP4 protein) were generated using baculovirus (rBV) expression system. Recombinant ROP4 protein with influenza M1 were cloned and expressed in rBV. SF9 insect cells were coinfected with recombinant rBVs expressing T. gondii ROP4 and influenza M1. As the results, influenza M1 VLPs showed spherical shapes, and T. gondii ROP4 protein exhibited as spikes on VLP surface under transmission electron microscopy (TEM). The M1 VLPs resemble virions in morphology and size. We found that M1 VLPs reacted with antibody from T. gondii-infected mice by western blot and ELISA. This study demonstrated that T. gondii ROP4 protein can be expressed on the surface of influenza M1 VLPs and the M1 VLPs containing T. gondii ROP4 reacted with T. gondii-infected sera, indicating the possibility that M1 VLPs could be used as a coating antigen for diagnostic and/or vaccine candidate against T. gondii infection.

Antiviral Activity of Fritillaria thunbergii Extract against Human Influenza Virus H1N1 (PR8) In Vitro, In Ovo and In Vivo

  • Kim, Minjee;Nguyen, Dinh-Van;Heo, Yoonki;Park, Ki Hoon;Paik, Hyun-Dong;Kim, Young Bong
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.172-177
    • /
    • 2020
  • Influenza viruses cause respiratory diseases in humans and animals with high morbidity and mortality rates. Conventional anti-influenza drugs are reported to exert side effects and newly emerging viral strains tend to develop resistance to these commonly used agents. Fritillaria thunbergii (FT) is traditionally used as an expectorant for controlling airway inflammatory disorders. Here, we evaluated the therapeutic effects of FT extracts against influenza virus type A (H1N1) infection in vitro, in ovo, and in vivo. In the post-treatment assay, FT extracts showed high CC50 (7,500 ㎍/ml), indicating low toxicity, and exerted moderate antiviral effects compared to oseltamivir (SI 50.6 vs. 222) in vitro. Antiviral activity tests in ovo revealed strong inhibitory effects of both FT extract and oseltamivir against H1N1 replication in embryonated eggs. Notably, at a treatment concentration of 150 mg/kg, only half the group administered oseltamivir survived whereas the FT group showed 100% survival, clearly demonstrating the low toxicity of FT extracts. Consistent with these findings, FT-administered mice showed a higher survival rate with lower body weight reduction relative to the oseltamivir group upon treatment 24 h after viral infection. Our collective results suggest that FT extracts exert antiviral effects against influenza H1N1 virus without inducing toxicity in vitro, in ovo or in vivo, thereby supporting the potential utility of FT extract as a novel candidate therapeutic drug or supplement against influenza.

Screening of a Natural Feed Additive Having Anti-viral Activity against Influenza A/H5N1 (안전한 닭고기 생산을 위한 고병원성 조류인플루엔자 A/H5N1에 항바이러스 효과를 가진 천연 사료첨가제의 탐색)

  • Lee, Jang-Hyun;Kwon, Su-Min;Seo, Sang-Heui;Park, Young-Seo;Kim, Young-Bong;Kim, Soo-Ki;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.28 no.4
    • /
    • pp.512-516
    • /
    • 2008
  • To search for anit-H5N1 influenza virus agent, the anti-viral activity of methanol and aqueous extracts from thirty medicinal plants were examined in this study. The plant material (30 g) was extracted with methanol (300 mL) for 24 hr at room temperature. Methanol extracts were filtered and evaporated, then freeze-dried. Aqueous extracts were prepared with dried plant material (30 g) and hot distilled water (300 mL). After 3 hr, the aqueous extracts were filtered and evaporated, then lyophilized. Extracts prepared from different plants were tested the antiviral activity against influenza viruses [A/vietnam/1194/04 (H5N1)-NIBRG-14] using the hemagglutination (HA) assay. Among the test plants, Asarum sieboldii was found to be a potent inhibitor of H5N1 influenza virus in MDCK cell culture. Virus titers were 7 log, whereas with methanol extract of Asarum sieboldii for 48 hr titers were 3 log, indicating that methanol extract of Asarum sieboldii inhibited the H5N1 influenza viruses from the infected cells.

Enhancement of DNA Vaccine-induced Immune Responses by Influenza Virus NP Gene

  • Choi, So-Young;Suh, You-Suk;Cho, Jae-Ho;Jin, Hyun-Tak;Chang, Jun;Sung, Young-Chul
    • IMMUNE NETWORK
    • /
    • v.9 no.5
    • /
    • pp.169-178
    • /
    • 2009
  • DNA immunization induces B and T cell responses to various pathogens and tumors. However, these responses are known to be relatively weak and often transient. Thus, novel strategies are necessary for enhancing immune responses induced by DNA immunization. Here, we demonstrated that co-immunization of influenza virus nucleoprotein (NP) gene significantly enhances humoral and cell-mediated responses to codelivered antigens in mice. We also found that NP DNA coimmunization augments in vivo proliferation of adoptively transferred antigen-specific CD4 and CD8 T cells, which enhanced protective immunity against tumor challenge. Our results suggest that NP DNA can serve as a novel genetic adjuvant in cocktail DNA vaccination.

Anti-influenza Virus Activity of Water Soluble Substance from Elfvingia applanata Alone and in Combinations with Interferons (잔나비걸상버섯 수용성물질의 항인플루엔자바이러스 작용과 인터페론과의 병용효과)

  • 정선식;어성국;김영소;한성순
    • YAKHAK HOEJI
    • /
    • v.43 no.4
    • /
    • pp.469-473
    • /
    • 1999
  • EA, the water soluble substance, was prepared from the carpophores of Elfvingia applanata (Pers). Karst. Anti-influenza A virus (anti-Flu A) activity of EA was examined of Vero cells by plaque reduction assay in vitro. And the combined antiviral effects fo EA with interferon (IFN) alpha and gamma were examined on the multiplication of Flu A with 50% effective concentration ($EC_50$) of 1.50 mg/ml. The results of combination assay were evaluated by the combination index (CI) that was analysed by the multiple drug effect analysis. The combination of EA with IFN alpha on Flu A showed more potent synergism with CI values of 0.50~0.52 of 50%, 70%, 90% effective levels than that with IFN gamma with CI values of 0.82~0.99.

  • PDF

Identification of Differentially Expressed Genes in Ducks in Response to Avian Influenza A Virus Infections

  • Ndimukaga, Marc;Won, Kyunghye;Truong, Anh Duc;Song, Ki-Duk
    • Korean Journal of Poultry Science
    • /
    • v.47 no.1
    • /
    • pp.9-19
    • /
    • 2020
  • Avian influenza (AI) viruses are highly contagious viruses that infect many bird species and are zoonotic. Ducks are resistant to the deadly and highly pathogenic avian influenza virus (HPAIV) and remain asymptomatic to the low pathogenic avian influenza virus (LPAIV). In this study, we identified common differentially expressed genes (DEGs) after a reanalysis of previous transcriptomic data for the HPAIV and LPAIV infected duck lung cells. Microarray datasets from a previous study were reanalyzed to identify common target genes from DEGs and their biological functions. A total of 731 and 439 DEGs were identified in HPAIV- and LPAIV-infected duck lung cells, respectively. Of these, 227 genes were common to cells infected with both viruses, in which 193 genes were upregulated and 34 genes were downregulated. Functional annotation of common DEGs revealed that translation related gene ontology (GO) terms were enriched, including ribosome, protein metabolism, and gene expression. REACTOME analyses also identified pathways for protein and RNA metabolism as well as for tissue repair, including collagen biosynthesis and modification, suggesting that AIVs may evade the host defense system by suppressing host translation machinery or may be suppressed before being exported to the cytosol for translation. AIV infection also increased collagen synthesis, showing that tissue lesions by virus infection may be mediated by this pathway. Further studies should focus on these genes to clarify their roles in AIV pathogenesis and their possible use in AIV therapeutics.

Status of and Factors Influencing Vaccination against the Pandemic (H1N1) 2009 Virus among University Students from the Fields of Nursing and Allied Health (일 지역 보건계열 대학생의 신종인플루엔자 A (H1N1) 예방접종 실태 및 영향 요인)

  • Kim, Og-Son
    • Journal of Korean Academy of Nursing
    • /
    • v.41 no.3
    • /
    • pp.403-410
    • /
    • 2011
  • Purpose: This study was to identify the current status of vaccination against the pandemic (H1N1) 2009 virus among university students from the fields of nursing and allied health from a local community and verify factors influencing vaccination. Methods: The study included 227 students in the fields of nursing and allied health from a provincial university. Data were obtained from these participants between May 31 and June 11, 2010 by using self-report questionnaires. Results: The rate of vaccination against the pandemic (H1N1) 2009 virus for these participants was 14.5%. No difference was observed in this regard between majors and school year. Factors that influence vaccination against this virus included previous vaccination against seasonal influenza and participants’ attitudes toward general vaccination. Conclusion: The results suggest that for effective pandemic (H1N1) 2009 vaccination of university students from the fields of nursing and allied health, students who have not been vaccinated should be intensively managed. Developing a vaccination program that encourages a positive attitude toward vaccination is recommended.

Surface glycoproteins determine the feature of the 2009 pandemic H1N1 virus

  • Kim, Jin Il;Lee, Ilseob;Park, Sehee;Park, Man-Seong
    • BMB Reports
    • /
    • v.45 no.11
    • /
    • pp.653-658
    • /
    • 2012
  • After the outbreak of the swine-origin influenza A H1N1 virus in April 2009, World Health Organization declared this novel H1N1 virus as the first pandemic influenza virus (2009 pH1N1) of the $21^{st}$ century. To elucidate the characteristics of 2009 pH1N1, the growth properties of A/Korea/01/09 (K/09) was analyzed in cells. Interestingly, the maximal titer of K/09 was higher than that of a seasonal H1N1 virus isolated in Korea 2008 (S/08) though the RNP complex of K/09 was less competent than that of S/08. In addition, the NS1 protein of K/09 was determined as a weak interferon antagonist as compared to that of S/08. Thus, in order to confine genetic determinants of K/09, activities of two major surface glycoproteins were analyzed. Interestingly, K/09 possesses highly reactive NA proteins and weak HA cell-binding avidity. These findings suggest that the surface glycoproteins might be a key factor in the features of 2009 pH1N1.

Improving siRNA design targeting nucleoprotein gene as antiviral against the Indonesian H5N1 virus

  • Hartawan, Risza;Pujianto, Dwi Ari;Dharmayanti, Ni Luh Putu Indi;Soebandrio, Amin
    • Journal of Veterinary Science
    • /
    • v.23 no.2
    • /
    • pp.24.1-24.10
    • /
    • 2022
  • Background: Small interfering RNA technology has been considered a prospective alternative antiviral treatment using gene silencing against influenza viruses with high mutations rates. On the other hand, there are no reports on its effectiveness against the highly pathogenic avian influenza H5N1 virus isolated from Indonesia. Objectives: The main objective of this study was to improve the siRNA design based on the nucleoprotein gene (siRNA-NP) for the Indonesian H5N1 virus. Methods: The effectiveness of these siRNA-NPs (NP672, NP1433, and NP1469) was analyzed in vitro in Marbin-Darby canine kidney cells. Results: The siRNA-NP672 caused the largest decrease in viral production and gene expression at 24, 48, and 72 h post-infection compared to the other siRNA-NPs. Moreover, three serial passages of the H5N1 virus in the presence of siRNA-NP672 did not induce any mutations within the nucleoprotein gene. Conclusions: These findings suggest that siRNA-NP672 can provide better protection against the Indonesian strain of the H5N1 virus.

Clinical Analysis of Acute Respiratory Tract Infections by Influenza Virus in Children (인플루엔자 바이러스에 의한 소아 급성 호흡기 감염증의 유행 및 임상 양상)

  • Kwon, Min Kyoung;Kim, Mi Ran;Park, Eun Young;Lee, Kon Hee;Yoon, Hae Sun;Kim, Kwang Nam;Lee, Kyu Man
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.12
    • /
    • pp.1519-1527
    • /
    • 2002
  • Purpose : Although influenza virus is one of the most important causes of acute respiratory tract infections(ARTIs) in children, virus isolation is not popular and there are only a few clinical studies on influenza in Korea. We evaluated the epidemiologic and clinical features of ARTIs by influenza virus in children. Methods : From February 1995 to August 2001, nasopharyngeal aspirations were obtained and cultured for the isolation of influenza virus in children admitted with ARTIs. The medical records of patients with influenza virus infection were reviewed retrospectively. Results : Respiratory viruses were isolated in 997(22.0%) out of 4,533 patients examined, and influenza virus was isolated in 164 cases(3.6%). Influenza virus was isolated year after year mainly from December to April of next year. The ratio of male and female was 1.9 : 1 with a median age of 15 months. The most common clinical diagnosis of influenza virus infection was pneumonia, and fever and cough developed in most patients. There was no difference between influenza A and B infection in clinical diagnoses and symptoms. All patients recovered without receiving antiviral treatment except for one patient diagnosed with pneumonia who had underlying disease of Down syndrome with ventricular septal defect. Conclusion : ARTIs caused by influenza virus developed every winter and spring during the period of study. Because fatal complication can develop in the high risk group, prevention, early diagnosis and proper management of influenza should be emphasized.