• Title/Summary/Keyword: influence diagram

Search Result 160, Processing Time 0.024 seconds

Experimental Investigations on Upper Part Load Vortex Rope Pressure Fluctuations in Francis Turbine Draft Tube

  • Nicolet, Christophe;Zobeiri, Amirreza;Maruzewski, Pierre;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.179-190
    • /
    • 2011
  • The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The influence of outlet bubble cavitation and air injection is also investigated for low cavitation number. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and the associated pressure fluctuations is analyzed by varying the rotational speed.

Influence of Temperature on the Treatment Efficiency of Chlorinated Organic Substances in Groundwater by Permeable Reactive Barrier (염소계 유기화합물로 오염된 지하수의 반응성 투과 벽체 처리 효율에 대한 온도의 영향)

  • Kim, Sun-Hye;Kim, Eun-Zi;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.2
    • /
    • pp.175-183
    • /
    • 2014
  • The influence of temperature on the treatment efficiency of chlorinated organic substances contained in groundwater by permeable reactive barrier which is composed of $Fe^{\circ}$ has been investigated by constructing the Pourbaix diagrams for Fe-$H_2O$ system at different temperatures based on thermodynamic estimation. In aerobic condition, the equilibrium potentials for $Fe^{\circ}/Fe^{2+}$ and $Fe^{2+}/Fe^{3+}$ were observed to increase, therefore, the dechlorination reaction for organic pollutants by $Fe^{\circ}$ was considered to decline with temperature due to the diminished oxidation of reactive barrier. The result for the variations of the ionization fraction of $Fe^{2+}$ and $Fe^{3+}$ ion in the pH range of 0 ~ 2.5 obtained by employing Visual MINTEQ program showed that the ionization fraction of $Fe^{2+}$ increased with pH, however, that of $Fe^{3+}$ decreased symmetrically and the extent of the variation of ionization fraction for both ions was raised as temperature rises. The equilibrium pH for $Fe^{3+}/Fe(OH)_3$ was examined to decrease with temperature so that the treatment efficiency of chlorinated organic substance was expected to decrease with temperature due to the enhanced formation of passivating film in aerobic condition. The change of the reactivity of a specific chemical species with temperature was defined quantitatively based on the area of its stable region in Pourbaix diagram and depending on this the reactivity of $Fe^{3+}$ was shown to decrease with temperature, however, that of $Fe(OH)_3$ was decreased monotonously as temperature is raised for $Fe^{3+}/Fe(OH)_3$ equilibrium system. In anaerobic condition, the equilibrium potential for $Fe^{\circ}/Fe^{2+}$ was observed to rise and the equilibrium pH for $Fe^{2+}/Fe(OH)_2$ were examined to decrease as temperature increases, therefore, similar to that for aerobic condition the efficiency of the dechlorination reaction for organic substances was considered to be diminished when temperature rises because of the reduced oxidation of $Fe^{\circ}$ and increased formation of $Fe(OH)_2$ passivating film.

A Study on the Influence Diagrams for the Application to Containment Performance Analysis (격납용기 성능해석을 위한 영향도에 관한 연구)

  • Park, Joon-Won;Jae, Moon-Sung;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.129-136
    • /
    • 1996
  • Influence diagram method is applied to containment performance analysis of Young-Gwang 3&4 in an effort to overcome some drawbacks of current containment performance analysis method. Event tee methodology has been adopted as a containment performance analysis method. There are, however, some drawbacks on event tree methodology. This study is to overcome three major drawbacks of the current containment performance analysis method : 1) Event tree cannot express dependency between events explicitly. 2) Accident Progression Event Tree (APET) cannot represent entire containment system. 3) It is difficult to consider decision making problem. To resolve these problems, influence diagrams, is proposed. In the present ok, the applicability of the influence diagrams has been demonstrated for YGN 3&4 containment performance analysis and accident management strategy assessments of this study are in good agreement with those of YGN 3&4 IPE. Sensitivity analysis has been peformed to identify relative important variables for each early containment failure, late containment and basemat melt-though. In addition, influence diagrams are used to assess two accident management strategies : 1) RCS depressurization, 2) cavity flooding. It is shown that influence diagrams can be applied to the containment performance analysis.

  • PDF

Influence of DIC Frame Rate on Experimental Determination of Instability and Fracture Points for DP980 Sheets under Various Loading Conditions (다양한 하중 조건에서 DP980 판재의 불안정성 및 파단점 결정시 DIC Frame Rate의 영향)

  • Noh, E.;Hong, S.
    • Transactions of Materials Processing
    • /
    • v.28 no.6
    • /
    • pp.368-374
    • /
    • 2019
  • The past recent years have seen an increasing use of high-strength steel sheets in the automotive industry. However, the formability and damage prediction of these materials requires accurate acquisition of necking and fracture strains. Digital image correlation (DIC) is used to accurately capture the necking and fracture strains during testing. The fact that single time points of capturing vary with frame rate makes the need for an investigation necessary. For the high-strength steel DP980, the frame-rate dependences of the final necking and fracture strains values are analyzed here. To eliminate the influence of gauge length, the strains were measured locally by DIC. Results for three specimen shapes obtained with frame rates of 1 and 900 fps (frames per second) were considered and based on them, triaxiality failure diagrams (TFD) are established. It was observed that after diffuse necking, the deformation path departed from the initially linear one, and the stress triaxiality grew with ongoing deformation. It was further revealed that the frame rate-dependence of the necking strain was rather low (< 2%), whereas the fracture strain could be underestimated by up to 8% when the lower frame rate of 1 fps was used (compared with 900 fps). In this study, this issue is investigated while taking into consideration the three different triaxialities. These results demonstrate the importance of choosing an appropriate frame rate for the determination of necking and fracture strains in particular.

Prediction on gas exchange process of a multi-cylinder 4-stroke cycle spark ignition engine (다기관 4사이클 스파크 점화기관의 가스 교환과정에 관한 예측)

  • 이병해;이재철;송준호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.67-87
    • /
    • 1991
  • The computer program which predicts the gas exchange process of multi-cylinder 4-Stroke cycle spark-ignition engine, can be great assistance for the design and development of new engine. In this study, the computer program was developed to predict the gas exchange process of multi-cylinder four stroke cycle spark ignition engine including intake and exhaust systems. When gas exchange process is to be calculated, the evaluation of the variation of the thermo-dynamic properties with time and position in the intake and exhaust systems is required. For the purpose, the application of the generalized method of characteristics to the gas exchange process is known as one of the method. The simulation model developed was investigated to the analysis of the branch system of multi-cylinder. The models used were the 2-zone expansion model and single zone model for in cylinder calculation and the generalized method of characteristic including area change, friction, heat transfer and entropy gradients for pipe flow calculation. The empirical constants reduced to least number as possible were determined through the comparison with the experimented indicator diagram of one particular operation condition and these constants were applied to other operating condition. The predicted pressures in cylinder were compared with the experimental results over the wide range of equivalence ratio and ignition timing. The predicted values have shown good agreement with the experimental results. The thermodynamic properties in the intake and exhaust system were predicted over the wide range of equivalence ratio and ignition timing. The obtained results can be summarized as follows. 1. Pressures in the exhaust manifold have a little influence on the equivalence ratio, a great influence on the ignition timing. 2. Pressures in the inlet manifold are nearly unchanged by the equivalence ratio and the ignition timing. 3. In this study, the behaviors of the exhaust temperature, gas in the exhaust manifold were ascertained.

  • PDF

A Case Study on Risk Analysis of Large Construction Projects (대형건설공사의 리스크 분석에 관한 사례적용연구)

  • Kang In-Seok;Kim Chang-Hak;Son Chang-Baek;Park Hong-Tae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.2 no.2 s.6
    • /
    • pp.98-108
    • /
    • 2001
  • This research proposes a new risk analysis model in order to guarantee successful performance of construction projects. The risk analysis model, called Construction Risk Analysis System(CRAS), is introduced to help contractors Identify project risks through RBS and through the procedures in risk analysis model. The proposed CRAS model consists of three phases. First step, CRAS model can help contractors decide whether or not they bid for a project by analysing risks involved in the project. Second step, the influence diagraming, decision tree and Monte Carlo simulation are used as tools to analyze and evaluate project risks quantitatively. Third step, Monte Carlo simulation is used to assess risk for groups of activities with probabilistic branching and calendars. Consequently, it will help contractors identify risk elements in their projects and quantify the impact of risk on project time and cost.

  • PDF

An Influence of Visualization on Geometric Problem Solving in the Elementary Mathematics (시각화가 초등기하문제해결에 미치는 영향)

  • Yun, Yea-Joo;Kang, Sin-Po;Kim, Sung-Joon
    • Journal of the Korean School Mathematics Society
    • /
    • v.13 no.4
    • /
    • pp.655-678
    • /
    • 2010
  • In the elementary mathematics, geometric education emphasize spatial sense and understandings of figures through development of intuitions in space. Especially space visualization is one of the factors which try conclusion with geometric problem solving. But studies about space visualization are limited to middle school geometric education, studies in elementary level haven't been done until now. Namely, discussions about elementary students' space visualization process and methods in plane or space figures is deficient in relation to geometric problem solving. This paper examines these aspects, especially in relation to plane and space problem solving in elementary levels. First, we investigate visualization methods for plane problem solving and space problem solving respectively, and analyse in diagram form how progress understanding of figures and visualization process. Next, we derive constituent factor on visualization process, and make a check errors which represented by difficulties in visualization process. Through these analysis, this paper aims at deriving an influence of visualization on geometric problem solving in the elementary mathematics.

  • PDF

The Influence of pH on the Color Development of Melanoidins Formed from Fructose/Amino Acid Enantiomer Model Systems

  • Kim, Ji-Sang;Lee, Young-Soon
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.4
    • /
    • pp.306-312
    • /
    • 2008
  • This study investigated the influence of pH on the color development of melanoidins formed from amino acid enantiomer model systems. For this, the color development was evaluated by measuring browning at 420 nm and color measurements by spectrophotometry and colorimetry. The browning and browning index showed no difference according to the type of amino acid enantiomers, while that formed from the D-Asn system was the only difference according to pH level. The tristimulus value of melanoidins formed from all model systems was located on a dominant wavelength of 475 nm, the blue zone of the diagram. In addition, the $L^*$, $a^*$, $b^*$, $C^*_{ab}$ values, and ${\Delta}E^*$ index on the basis of the type of amino acid enantiomers, the differences were markedly found at pH 4.0. At pH 7.0, significantly differences were found in the $L^*$, $a^*$, $b^*$ values, and ${\Delta}E^*$ index and not in the case of the lysine enantiomers. In addition, at pH 10.0, the differences were found in the $a^*$ and $b^*$ values from the lysine enantiomers and $C^*_{ab}$ value from the asparagine enantiomers. Therefore, the color development of melanoidins was influenced by the type of amino acid enantiomers and pH levels. Especially, it is thought that the $a^*$ and $b^*$ values can be used to explain the differences among the amino acid enantiomers in the color development of melanoidins.

Real-time Estimation on Service Completion Time of Logistics Process for Container Vessels (선박 물류 프로세스의 실시간 서비스 완료시간 예측에 대한 연구)

  • Yun, Shin-Hwi;Ha, Byung-Hyun
    • The Journal of Society for e-Business Studies
    • /
    • v.17 no.2
    • /
    • pp.149-163
    • /
    • 2012
  • Logistics systems provide their service to customers by coordinating the resources with limited capacity throughout the underlying processes involved to each other. To maintain the high level of service under such complicated condition, it is essential to carry out the real-time monitoring and continuous management of logistics processes. In this study, we propose a method of estimating the service completion time of key processes based on process-state information collected in real time. We first identify the factors that influence the process completion time by modeling and analyzing an influence diagram, and then suggest algorithms for quantifying the factors. We suppose the container terminal logistics and the process of discharging and loading containers to a vessel. The remaining service time of a vessel is estimated using a decision tree which is the result of machine-learning using historical data. We validated the estimation model using container terminal simulation. The proposed model is expected to improve competitiveness of logistics systems by forecasting service completion in real time, as well as to prevent the waste of resources.

Prediction Model for the Microstructure and Properties in Weld Heat Affected Zone: V. Prediction Model for the Phase Transformation Considering the Influence of Prior Austenite Grain Size and Cooling Rate in Weld HAZ of Low Alloyed Steel (용접 열영향부 미세조직 및 재질 예측 모델링: V. 저합금강의 초기 오스테나이트 결정립크기 및 냉각 속도의 영향을 고려한 용접 열영향부 상변태 모델)

  • Kim, Sang-Hoon;Moon, Joon-Oh;Lee, Yoon-Ki;Jeong, Hong-Chul;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.104-113
    • /
    • 2010
  • In this study, to predict the microstructure in weld HAZ of low alloyed steel, prediction model for the phase transformation considering the influence of prior austenite grain size and cooling rate was developed. For this study, six low alloyed steels were designed and the effect of alloying elements was also investigated. In order to develop the prediction model for ferrite transformation, isothermal ferrite transformation behaviors were analyzed by dilatometer system and 'Avrami equation' which was modified to consider the effect of prior austenite grain size. After that, model for ferrite phase transformation during continuous cooling was proposed based on the isothermal ferrite transformation model through applying the 'Additivity rule'. Also, start temperatures of ferrite transformation were predicted by $A_{r3}$ considering the cooling rate. CCT diagram was calculated through this model, these results were in good agreement with the experimental results. After ferrite transformation, bainite transformation was predicted using Esaka model which corresponded most closely to the experimental results among various models. The start temperatures of bainite transformation were determined using K. J. Lee model. Phase fraction of martensite was obtained according to phase fractions of ferrite and bainite.