• Title/Summary/Keyword: inflow variation

Search Result 262, Processing Time 0.027 seconds

Correlation analysis and time series analysis of Ground-water inflow rate into tunnel of Seoul subway system

  • 김성준;이강근;염병우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.254-257
    • /
    • 2003
  • Statistical analysis is performed to estimate the correlations between geological or geographical factor and groundwater inflow rates in the Seoul subway system. Correlation analysis shows that among several geological and geographical factors fractures and streams have most strong effects on inflow rate into tunnels. In particular, subway line 5∼8 are affected more by these factors than subway line 1∼4. Time series analysis is carried out to forecast groundwater inflow rate. Time series analysis is a useful empirical method for simulation and forecasts in case that physical model can not be applied to. The time series of groundwater inflow rates is calculated using the observation data. Transfer function-noise model is applied with the precipitation data as input variables. For time series analysis, statistical methods are performed to identify proper model and autoregressive-moving average models are applied to evaluation of inflow rate. Each model is identified to satisfy the lowest value of information criteria. Results show that the values by result equations are well fitted with the actual inflow rate values. The selected models could give a good explanation of inflow rates variation into subway tunnels.

  • PDF

A Study on the Hydraulic Characteristics of River Junctions Using FLDWAV Model (FLDWAV 모형을 이용한 하천합류부에서의 수리학적 특성 연구)

  • Cho, Hyeon-Kyeong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.275-283
    • /
    • 2007
  • This study aims at the calculation of a variation of flow characteristics of main channel for tributary inflow in river junction. So this study was analyzed the variation of flow depth and velocity in main channel for a change of inflow degree. For this purpose, FLDWAV model are carried out for variations of $30^{\circ}$, $60^{\circ}$ and $90^{\circ}$ tributary inflow at junction. Results show that velocity ratio(V1/V3) increases and flow depth ratio(H1/H3) decreases for discharge ratio(Q1/Q3) of upstream and downstream when degree increases in junction. And FLDWAV model was applied at a real river junctions. Selected area is a junction of Gumho river and Sin stream. Results show that pattern is similar to a virtual channel.

  • PDF

PIV Velocity Field Analysis of Inflow ahead of a Rotating Marine Propeller (회전하는 선박 프로펠러 전방 유입류에 대한 PIV 속도장 해석)

  • 이상준;백부근
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.4
    • /
    • pp.30-37
    • /
    • 2004
  • Flow characteristics of the inflow ahead of a rotating propeller attached to a container ship model were investigated using a two-frame PIV (Particle Image Velocimetry) technique. Ensemble-averaged mean velocity fields were measured at four different blade phases. The mean velocity fields show the acceleration of inflow due to the rotating propeller and the velocity deficit in the near-wake region. The axial velocity distribution of inflow in the upper plane of propeller is quite different from that in the lower plane due to the thick hull boundary layer. The propeller inflow also shows asymmetric axial velocity distribution in the port and starboard side. As the inflow moves toward the propeller, the effect of phase angle variation of propeller blade on the inflow becomes dominant. In the upper plane above the propeller axis the inflow has very low axial velocity and large turbulent kinetic energy, compared with the lower plane. The boundary layer developed along the bottom surface of stern hull forms a strong shear layer affecting vortex structure of the propeller near-wake.

Variation in the Main Kuroshio Path South of Japan

  • Sekine, Yoshihiko
    • Journal of the korean society of oceanography
    • /
    • v.37 no.3
    • /
    • pp.196-200
    • /
    • 2002
  • The time variation in the Kuroshio is studied by use of nine observed distances of the main Kuroshio axis from the Japanese coast. The observed distances over 1975 - 1995 are estimated from the Prompt Report of Oceanographic Conditions published by Hydrographic Department of the Maritime Safety Agency of Japan. It is shown that large sea level difference between Naze and Nishinoomote, which represents the volume transport of the southern inflow south of Kyushu, coincides with larger distance of the Kuroshio in the upstream area from off Kyushu to off eastern Kii Peninsula and smaller distance in the downstream area from off Omae-zaki to off Boso Peninsula. In contrast, large sea level difference between Nishinoomote and Aburatsu, which represents the volume transport of northern inflow south of Kyushu, corresponds to smaller distance in the upstream area and larger distance in the downstream area. Path dynamics of the Kuroshio is discussed with reference to the variation in Volume transport south of Kyushu.

EFFECTS OF INFLOW ANGLE ON LAMINAR FLOW PAST A TRIANGULAR CYLINDER (삼각봉을 지나는 층류유동에 대한 입구유동각도 변화의 영향)

  • Park, Tse-Seon
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.22-28
    • /
    • 2011
  • Laminar Flow over an equilateral triangular cylinder is studied for several inflow angles. Under an uniform flow of $Re_d$=50,75,100,125,150, the triangular cylinder is rotated by ${\theta}$=$0^{\circ}$,$15^{\circ}$,$30^{\circ}$,$45^{\circ}$,$60^{\circ}$,$75^{\circ}$,$90^{\circ}$,$105^{\circ}$. The governing equations are solved by the PISO algorithm based on the finite volume method of the unstructured grid system. The effects of the inflow angle on the vortex-shedding flows are investigated. The Strouhal number shows a minimum at ${\theta}$=$60^{\circ}$. It is closely related to the variation of pressure and flow structure induced by the movement of separation points.

Case History for Safe Diagnosis of Embankment Dike using Composite Analysis of Various Geophysical surveys (물리탐사 결과 복합해석을 통한 방조제 제체 정밀안전진단 사례)

  • Song, Sung-Ho;Seong, Baek-Uk;Kim, Young-Gyu;Kang, Mi-Kyung;Lee, Gyu-Sang;Kim, Yang-Bin
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.107-112
    • /
    • 2007
  • To establish the reinforce region and technique through the embankment dike after identifying the region of seawater inflow, we carried out small-loop electromagnetic (EM) survey, electrical resistivity survey and refraction seismic method. We also analyzed the distribution of electrical conductivity in reservoir with depth every two month and monitored water level variations with tidal variation in four observation wells located at seaside and reservoir side in order to analyze the relationship with survey results. From both the cross-correlation between tidal and water level variation at four wells and the distribution of electrical conductivity in reservoir with depth, the major portion of seawater inflow are identified through the embankment dike. From electromagnetic and electrical resistivity survey results, it was found that the seawater inflow were happened through several small regions at seaside and became wider near reservoir side. The 2-D inversion sections of refraction seismic method showed that the pebble-bearing sand layer is spread over the whole region with two to four width. From the this study, small-loop EM, electrical resistivity and refraction seismic surveys accompany with the distribution of electrical conductivity in reservoir with depth and the monitoring results for water level variations are revealed to be effective to identify seawater inflow pathway through embankment dike and to establish the reinforce region and technique through the embankment dike.

  • PDF

Determination of Weight Coefficients of Multiple Objective Reservoir Operation Problem Considering Inflow Variation (유입량의 변동성을 고려한 저수지 연계 운영 모형의 가중치 선정)

  • Kim, Min-Gyu;Kim, Jae-Hee;Kim, Sheung-Kown
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • The purpose of this study is to propose a procedure that will be able to find the most efficient sets of weight coefficients for the Geum-River basin in Korea. The result obtained from multi-objective optimization model is inherently sensitive to the weight coefficient on each objective. In multi-objective reservoir operation problems, the coefficient setting may be more complicated because of the natural variation of inflow. Therefore, for multi-objective reservoir operation problems, it may be important for modelers to provide reservoir operators with appropriate sets of weight coefficients considering the inflow variation. This study presents a procedure to find an appropriate set of weight coefficients under the situation that has inflow variation. The proposed procedure uses GA-CoMOM to provide a set of weight coefficient sets. A DEA-window analysis and a cross efficiency analysis are then performed in order to evaluate and rank the sets of weight coefficients for various inflow scenarios. This proposed procedure might be able to find the most efficient sets of weight coefficients for the Geum-River basin in Korea.

Numerical study of dividing open-channel flows at bifurcation channel using TELEMAC-2D (TELEMAC-2D모형을 이용한 개수로 분류흐름에 대한 수치모의 연구)

  • Jung, Dae Jin;Jang, Chang-Lae;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.635-644
    • /
    • 2016
  • This study investigates variation of flow characteristics due to variation of branch channel width and discharge ratio at bifurcation channel using 2D numerical model. The calculated result considering secondary flow is more accurate and stable than without considering one. The diversion flow rate ($Q_3/Q_1$) is reduced by flow stagnation effect according to the interaction of the secondary flow and flow separation zone in branch channel. The less upstream inflow or the lower upstream velocity, the bigger variation of diversion flow rate by changing branch channel width. At uniform downstream boundary condition, the rate of change in Froude number of downstream of main channel($Fr_2$)-diversion flow rate ($Q_3/Q_1$) relations is similar about -2.4843~-2.6675 when branch channel width ratio (b/B) is decreased. At uniform diversion flow rate ($Q_3/Q_1$) condition, the width of recirculation zone in branch channel is decreased when branch channel width ratio (b/B) is decreased. The less upstream inflow in the case of increasing branch channel width or the narrower branch channel width in the case of increasing upstream inflow, the bigger reduction ratio of recirculation zone width. At uniform inflow discharge ($Q_1$) condition, diversion flow rate, the width and length of recirculation zone in branch channel are decreased when branch channel width ratio (b/B) is decreased.

Influence of Performance and Internal Flow of a Radial Inflow Turbine with Variation of Vane Nozzle Exit Angles (베인노즐 출구각도에 따른 100kW급 구심터빈의 성능 및 내부유동의 영향)

  • Mo, Jang-Oh;Kim, You-Taek;Oh, Cheol;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.757-764
    • /
    • 2011
  • In this study, we analysed the influence of the performance and inflow flow of a radial inflow turbine with the variation of vane nozzle exit angles for a 100kW class turbine applicable in the waste heat recovery system. For this, three-dimensional CFD analysis was performed using commercial code called ANSYS Fluent 12.1. As the vane nozzle exit angle was more increased the reattachment region near blades of the vane nozzle got smaller, and also the Mach number at vane nozzle exit was observed to be 1 due to the effect of the cross section reduction. Through this study, we expect that the analysed results will be used as the design material for the composition of the turbine optimal design parameters corresponding to the target output power.

A Study on Characteristics of Neural Network Model for Reservoir Inflow Forecasting (저수지 유입량 예측을 위한 신경망 모형의 특성 연구)

  • Kim, Jae-Hvung;Yoon, Yong-Nam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.4 s.7
    • /
    • pp.123-129
    • /
    • 2002
  • In this study the results of Chungju reservoir inflow forecasting using 3 layered neural network model were analyzed in order to investigate the characteristics of neural network model for reservoir inflow forecasting. The proper neuron numbers of input and hidden layer were proposed after examining the variations of forecasted values according to neuron number and training epoch changes, and the probability of underestimation was judged by deliberating the variation characteristics of forecasting according to the differences between training and forecasting peak inflow magnitudes. In addition, necessary minimum training data size for precise forecasting was proposed. As a result, We confirmed the probability that excessive neuron number and training epoch cause over-fitting and judged that applying $8{\sim}10$ neurons, $1500{\sim}3000$ training epochs might be suitable in the case of Chungju reservoir inflow forecasting. When the peak inflow of training data set was larger than the forecasted one, it was confirmed that the forecasted values could be underestimated. And when the comparative short period training data was applied to neural networks, relatively inaccurate forecasting outputs were resulted and applying more than 600 training data was recommended for more precise forecasting in Chungju reservoir.