• Title/Summary/Keyword: inflow concentration

Search Result 373, Processing Time 0.027 seconds

Defining optimum configuration for secondary clarifier using computer simulation (컴퓨터 시뮬레이션을 이용한 최적 이차침전지 형상 파악)

  • Lee, Byong-Hi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.219-230
    • /
    • 2010
  • Computer simulation has been widely used to design and optimize the operation of wastewater treatment plants since 1980. For secondary clarifiers, the simulation has been a tool to optimize the performance by providing dimensions for flocculation well. However, there has been no attempt to find the optimized geometrical parameters in circular secondary clarifier using simulation tools. In this study, three SVIs (Sludge Volume Indexes), two well types (feed and flocculation wells), 8 SWDs (Side Water Depths) and 9 bottom slopes were variables for simulation. Diurnal inflow and associated MLSS (Mixed Liquor Suspended Solid) concentrations were used for input loadings. When flocculation well was installed, 48% less concentration at lowest ESS (Effluent Suspended Solid) concentrations was produced and the diurnal ESS concentration range had been reduced by 52%. From these results, flocculation well must be installed to produce lower and stable ESS from circular secondary clarifiers. Under same loading conditions with $300m{\ell}$/g of SVI, The lowest ESS was produced when SWD was 4.5m with 4% of bottom slope. Therefore, SWD and bottom slope must not be deeper than 4.5m and must be near 4%, respectively, in circular clarifier with flocculation well to produce the lowest ESS concentration.

Development of the Temporal Simulation Model for Microorganism Concentrations in Paddy Field (논 담수 내 미생물 농도의 시간적 모의를 위한 모델 개발)

  • Hwang, Sye-Woon;Jang, Tea-Il;Park, Seung-Woo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.673-678
    • /
    • 2005
  • The objective of this paper is to develop the microorganism concentration simulation model for the health related effect analysis while farmers and water managers reuse the wastewater for agricultural irrigation. This model consists of the CE-QUAL-R1 model and the CREAMS-PADDY model. The CE-QUAL-R1 model is the 1-D numerical model to analyze the water quality of the reservoir and the CREAMS-PADDY model is modified from CREAMS model for considering the hydrologic cycles in paddy field. This model was applied to examine the application by the observed data from 2003 in Byoungjum study area. From this research, the average root mean square error (RMSE) for the simulated concentration during the calibration period was 0.51 MPN/100ml and correlation coefficient $(R^2)$ was 0.71. And the RMSE for the simulated concentration during the verification period was 0.46 MPN/100ml and $R^2$ was 0.73. This simulation results show that the coliform inflow concentrations by the wastewater irrigation wield great influence upon the temporal coliform concentrations in paddy field.

  • PDF

A Study on the comparison on Adsorption characteristics of Zeolite and DETOX for the removal of H2S (H2S 제거를 위한 Zeolite와 DETOX의 흡착 특성 비교 연구)

  • Park, Dae-Seok;Lim, Ji-Young;Cho, Young-Gun;Song, Seung-Jun;Kim, Jin-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4675-4681
    • /
    • 2014
  • This study examined the $H_2S$ removal characteristics, such as breakthrough time, adsorption capacity, and adsorption rate of adsorbents between Zeolite 3A and DETOX in terms of the $H_2S$ inflow concentration and adsorption temperature. The adsorption capacity of Zeolite 3A increased with increasing mass flow rate of hydrogen sulfide($H_2S$) inflow, but the breakthrough time decreased. On the other hand, both the adsorption capacity and breakthrough time of DETOX decreased with increasing mass flow rate of $H_2S$ inflow. The adsorption capacity and breakthrough time of Zeolite 3A decreased with increasing adsorption temperature but those of DETOX increased. The adsorption capacity of DETOX was higher than that of Zeolite 3A by a factor of 2.5 - 16.4 because the collision frequency that overcomes the activation energy barrier increased with increasing adsorption temperature. For Zeolite 3A and DETOX, the adsorption rate of $H_2S$ increased with increasing mass flow rate of $H_2S$ inflow and adsorption temperature. The adsorption rate of $H_2S$ for Zeolite 3A was 4 times as much as that for DETOX. For the removal of $H_2S$ in biogas, DETOX had an advantage over Zeolite 3A because DETOX had a much longer breakthrough time and greater adsorption capacity in the temperature range of 308~318K than Zeolite 3A.

Long-Range Transported SO2 Inflow fromAsian Continent to Korea Peninsula Using OMI SO2 Data and HYSPLIT Backward Trajectory Calculations (OMI 이산화황자료와 HYSPLIT 역궤적 계산을 이용한 동북아지역의 장거리 수송되는 이산화황 유입량 산출)

  • Park, Junsung;Hong, Hyunkee;Choi, Wonei;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.743-754
    • /
    • 2014
  • In this present paper, we, for the first time, calculated $SO_2$ inflow from China to Korea peninsula based on OMI $SO_2$ products and HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) backward trajectory calculations. The major factors used to estimate $SO_2$ flux are long range transported $SO_2$ concentration, transport speed of air mass, and thickness of transported air mass layer. The mean and maximum $SO_2$ fluxes are estimated to be 0.81 and $2.11g{\cdot}m^{-2}{\cdot}h^{-1}$, respectively based on OMI products while, those of $SO_2$ fluxes are 0.50 and $1.18g{\cdot}m^{-2}{\cdot}h^{-1}$ respectively using insitu data obtained at the surface. For most cases, larger $SO_2$ inflow values were found at the surface than those estimated for the air mass layer which extends from surface up to 1.5 km. However, increased transport speed of air mass leads to the enhanced $SO_2$ flux at the altitude up to 1.5 km at the receptor sites. Additionally, we calculate uncertainties of $SO_2$ flux using error propagation method.

Water Column Structure and Dispersal Pattern of Suspended Particulate Matter (SPM) in a floating ice-dominated fjord, Marian Cove, Antarctica during Austral Summer (유빙이 점유한 남극 마리안 소만의 하계기간 수층 구조와 부유물질 분산)

  • Yoo, Kyu-Cheul;Yoon, Hoo-Il;Kang, Cheon-Yun;Kim, Boo-Keun;Oh, Jae-Kyung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.4
    • /
    • pp.295-304
    • /
    • 2000
  • Vertical measurement of CTDT at about 30 min intervals and spatial surface temperature, salinity, and concentration of suspended particulate matters were conducted to elucidate the character of water column and the dispersal pattern in a floating ice-dominated fjord, Marian Cove, West Antarctica. Marian Cove showed two distinct water layers in terms of turbidity; 1) cold, fresh, and turbid surface plume in the upper 2 m,2) warm, saline, and relatively clean Maxwell Bay inflow between 15-45 m in water depth. Thermal melting of Maxwell Bay inflow and tidewater glacier/floating ices developed the surface mixed layer and the activity of floating ices cause Maxwell Bay inflow to be unstable. Due to the unstable water column, the development of Maxwell Bay inflow and subsequent surface plume are not influenced by tidal frequency. Coastal current generated by strong northwesterly wind may extend warm, saline, and turbid surface plume into the central part of the cove along the northern coast via the western coast of Weaver Peninsula. Terrigenous sediments of meltwaters from the glaciated ice cliffs near the corner of tidewater glacier and some coasts enter into the cove and their dispersion depends upon the hydrographic regimes (tide, wind, wave etc.). At the period of spring tide, the strong wind stress with the northwesterly wind direction reserve suspended sediment-fed surface plume and so allow the possibility of deposition of terrigenous sediments within the basin of cove.

  • PDF

Groundwater inflow rate estimation considering excavation-induced permeability reduction in the vicinity of a tunnel (터널 굴착으로 인한 터널인접 절리암반 투수계수 감소를 고려한 터널 내 지하수 유입량 산정방법)

  • Moon, Joon-Shik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.333-344
    • /
    • 2013
  • This paper discussed about the effect of permeability reduction of the jointed rock mass in the vicinity of a tunnel which is one of the reasons making large difference between the estimated ground-water inflow rate and the measured value. Current practice assumes that the jointed rock mass around a tunnel is a homogeneous, isotropic porous medium with constant permeability. However, in actual condition the permeability of a jointed rock mass varies with the change of effective stress condition around a tunnel, and in turn effective stress condition is affected by the ground water flow in the jointed rock mass around the tunnel. In short time after tunnel excavation, large increase of effective tangential stress around a tunnel due to stress concentration and pore-water pressure drop, and consequently large joint closure followed by significant permeability reduction of jointed rock mass in the vicinity of a tunnel takes place. A significant pore-water pressure drop takes place across this ring zone in the vicinity of a tunnel, and the actual pore-water pressure distribution around a tunnel shows large difference from the value estimated by an analytical solution assuming the jointed rock mass around the tunnel as a homogeneous, isotropic medium. This paper presents the analytical solution estimating pore-water pressure distribution and ground-water inflow rate into a tunnel based on the concept of hydro-mechanically coupled behavior of a jointed rock mass and the solution is verified by numerical analysis.

Compositions of haze aerosols and their variation by inflow pathway of air mass at Gosan site in Jeju Island during 2012-2013 (연무 에어로졸의 조성 및 기류 유입경로별 변화: 2012-2013년 제주도 고산지역 측정)

  • Hyeon, Dong-Rim;Song, Jung-Min;Kim, Ki-Ju;Kim, Won-Hyung;Kang, Chang-Hee;Ko, Hee-Jung
    • Analytical Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.213-222
    • /
    • 2014
  • The atmospheric aerosols of $PM_{10}$ and $PM_{2.5}$ were collected at Gosan site of Jeju Island during 2012- 2013. Their ionic and elemental species were analyzed in order to examine the composition variation of the haze aerosols in accordance with the pathway of air mass. The concentrations of $nss-SO_4{^{2-}}$, $NO_3{^-}$, and $NH_4{^+}$ increased 2.1~3.7 times in coarse particle and 3.1~6.5 times in fine particle modes, respectively, showing especially high $NO_3{^-}$ concentrations in fine particles during the haze days. The concentrations of S, Zn, Pb and K increased 3.0~5.6 times in coarse particles and 3.2~7.7 times in fine particles during the haze days, on the other hand Al, Fe, and Ca concentrations were high only in coarse particles. Due to the back trajectory analysis, the concentrations of $nss-SO_4{^{2-}}$ and $NO_3{^-}$ for haze days were high when the inflow pathway of air mass was from China, especially a high increase of $NO_3{^-}$ as through the south of China. The $NO_3{^-}/nss-SO_4{^{2-}}$ concentration ratio was relatively high in coarse mode as air mass inflow from China, but in fine mode it was high as air mass passing through the Korean peninsula.

Wastewater Flowrate Analysis of Drainage Basin for Application of Total Water Pollution Load Management System (수질오염총량관리제도 적용을 위한 도시유역의 하수발생량 분석)

  • Kwon, Jun-Hee;Park, In-Hyeok;Ha, Sung-Ryoung
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.75-82
    • /
    • 2009
  • The regulation of emission concentration for stream water qualities doesn't control quantitative increase on pollution loads, it has limits for improvement of water qualities. Total water pollution load management system(TMDL) can control the total amount of pollutant in waste water which is allowed to assign and control the total discharged pollutant loads in a permissible level. When it comes to generated wastewater value of TMDL system, there is difference between calculated value based on individual pollutant unit load and observed value. Calculated sewer inflow, calculated sewer outflow, measured sewer inflow, and measured sewer outflow at dry season are $26,460.9m^3$/d, $17,778.6m^3$/d, $17,106.1m^3$/d and $19,033.9m^3$/d respectively, Calculated sewer inflow, calculated sewer outflow, measured sewer inflow, and measured sewer outflow at rainy season are $49,512.2m^3$/d, $18,628.7m^3$/d, $30,918.2m^3$/d, $19,700.7m^3$/d respectively. This result presents the necessity to acquire the precise observed data to fulfill the efficient TMDL system.

  • PDF

Analysis of Proper Linked Treatment Load Using GPS-X Simulation (GPS-X 시뮬레이션을 이용한 적정 연계처리부하량 분석)

  • Kim, Sungji;Lee, Jiwon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.21 no.3
    • /
    • pp.244-250
    • /
    • 2019
  • Due to the industrial development and population growth, it has recently been shown that there are many problems caused by the rinked treatment water in local goverments and sewage treatment plants. The rinked treatment water has a characteristic of low flow rate and high concentration unlike general sewage. These characteristics increase sewage treatment difficulty and sewage treatment fee of sewage treatment facilities. Among the many influencing factors that increase sewage treatment unit cost, 'linked treatment load/design inflow load (%)' was derived as the most correlated factor. Through the selection and modeling of sewage treatment plants, the excess scope of design discharge water quality was investigated under the conditions of temperature and the conditions of 'linked treatment load/design inflow load (%)' taking into account the effects of the four seasons. The study found that for TN, 'linked treatment load/design inflow load (%)' was 19.7%, 22.6%, 25.1%and 27.7%, respectively, under conditions of $5^{\circ}C$, $10^{\circ}C$, $20^{\circ}C$ and $25^{\circ}C$. In case of TP, 'rinked treatment load/design inflow load (%)' was 10.7%, 12.2%, 15.6% and 17.5% at $5^{\circ}C$, $10^{\circ}C$, $20^{\circ}C$, and $25^{\circ}C$, respectively, under conditions of $5^{\circ}C$, $10^{\circ}C$, $20^{\circ}C$ and $25^{\circ}C$.

Variation of Inflow Density Currents with Different Flood Magnitude in Daecheong Reservoir (홍수 규모별 대청호에 유입하는 하천 밀도류의 특성 변화)

  • Yoon, Sung-Wan;Chung, Se-Woong;Choi, Jung-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1219-1230
    • /
    • 2008
  • Stream inflows induced by flood runoffs have a higher density than the ambient reservoir water because of a lower water temperature and elevated suspended sediment(SS) concentration. As the propagation of density currents that formed by density difference between inflow and ambient water affects reservoir water quality and ecosystem, an understanding of reservoir density current is essential for an optimization of filed monitoring, analysis and forecast of SS and nutrient transport, and their proper management and control. This study was aimed to quantify the characteristics of inflow density current including plunge depth($d_p$) and distance($X_p$), separation depth($d_s$), interflow thickness($h_i$), arrival time to dam($t_a$), reduction ratio(${\beta}$) of SS contained stream inflow for different flood magnitude in Daecheong Reservoir with a validated two-dimensional(2D) numerical model. 10 different flood scenarios corresponding to inflow densimetric Froude number($Fr_i$) range from 0.920 to 9.205 were set up based on the hydrograph obtained from June 13 to July 3, 2004. A fully developed stratification condition was assumed as an initial water temperature profile. Higher $Fr_i$(inertia-to-buoyancy ratio) resulted in a greater $d_p,\;X_p,\;d_s,\;h_i$, and faster propagation of interflow, while the effect of reservoir geometry on these characteristics was significant. The Hebbert equation that estimates $d_p$ assuming steady-state flow condition with triangular cross section substantially over-estimated the $d_p$ because it does not consider the spatial variation of reservoir geometry and water surface changes during flood events. The ${\beta}$ values between inflow and dam sites were decreased as $Fr_i$ increased, but reversed after $Fr_i$>9.0 because of turbulent mixing effect. The results provides a practical and effective prediction measures for reservoir operators to first capture the behavior of turbidity inflow.