• Title/Summary/Keyword: inflammatory breast cancer

Search Result 80, Processing Time 0.024 seconds

Sulforaphane Inhibits Growth of Human Breast Cancer Cells and Augments the Therapeutic Index of the Chemotherapeutic Drug, Gemcitabine

  • Hussain, Arif;Mohsin, Javeria;Prabhu, Sathyen Alwin;Begum, Salema;Nusri, Qurrat El-Ain;Harish, Geetganga;Javed, Elham;Khan, Munawwar Ali;Sharma, Chhavi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5855-5860
    • /
    • 2013
  • Phytochemicals are among the natural chemopreventive agents with most potential for delaying, blocking or reversing the initiation and promotional events of carcinogenesis. They therefore offer cancer treatment strategies to reduce cancer related death. One such promising chemopreventive agent which has attracted considerable attention is sulforaphane (SFN), which exhibits anti-cancer, anti-diabetic, and anti-microbial properties. The present study was undertaken to assess effect of SFN alone and in combination with a chemotherapeutic agent, gemcitabine, on the proliferative potential of MCF-7 cells by cell viability assay and authenticated the results by nuclear morphological examination. Further we analyzed the modulation of expression of Bcl-2 and COX-2 on treatment of these cells with SFN by RT-PCR. SFN showed cytotoxic effects on MCF-7 cells in a dose- and time-dependent manner via an apoptotic mode of cell death. In addition, a combinational treatment of SFN and gemcitabine on MCF-7 cells resulted in growth inhibition in a synergistic manner with a combination index (CI)<1. Notably, SFN was found to significantly downregulate the expression of Bcl-2, an anti-apoptotic gene, and COX-2, a gene involved in inflammation, in a time-dependent manner. These results indicate that SFN induces apoptosis and anti-inflammatory effects on MCF-7 cells via downregulation of Bcl-2 and COX-2 respectively. The combination of SFN and gemcitabine may potentiate the efficacy of gemcitabine and minimize the toxicity to normal cells. Taken together, SFN may be a potent anti-cancer agent for breast cancer treatment.

Morin, a Flavonoid from Moraceae, Inhibits Cancer Cell Adhesion to Endothelial Cells and EMT by Down-regulating VCAM-1 and N-cadherin

  • Lee, Jeong-Hee;Jin, Hana;Lee, Won Sup;Nagappan, Arulkumar;Choi, Yung Hyun;Kim, GonSup;Jung, Jin-Myung;Ryu, Chung Ho;Shin, Sung Chul;Hong, SoonChan;Kim, Hye Jung
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3071-3075
    • /
    • 2016
  • Morin, a flavonoid found in figs and other Moraceae species, displays a variety of biological actions, exerting anti-oxidant, anti-inflammatory and anti-carcinogenic effects. Here, we investigated the anti-cancer activity of morin focusing on anti-adhesive influence. We performed experiments with MDA-MB-231 human breast cancer cells. Morin inhibited TNF-induced cancer cell adhesion to human umbilical vein endothelial cells (HUVECs) without showing any toxicity. It further inhibited the expression of VCAM-1 on MDA-MB-231 cells as well as HUVECs. Morin also decreased the expression of N-cadherin on MDA-MB-231 cells. In addition, there was apparent anti-metastatic activity in vivo. In conclusion, this study suggested that morin inhibits cancer cell adhesion to HUVECs by reducing VCAM-1, and EMT by targeting N-cadherin, and that it features anti-metastatic activity in vivo. Further investigation of possible anti-metastatic activity of morin against human breast cancer cells is warranted.

Reduction of TNFα expression by Chungkookjang extracts in human breast cancer MDA-MB-231 cells (인간유방암 MDA-MB-231 세포에서 청국장추출물에 의한 TNFα 발현억제)

  • Park, Jameon;Kang, Choong Kyung;Kim, Han Bok
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.380-382
    • /
    • 2016
  • Chungkookjang, fermented soybeans, contains diverse peptides produced during fermentation. Fermented soybean extracts containing the peptides can affect cellular signal transduction. Proliferation of human breast cancer MDA-MB-231 cells were repressed dependent on concentrations of fermented soybean extracts. Since fermented soybean extracts inhibited breast cancer cell's growth, and inflammation is related to cancer, it is determined whether it can suppress inflammatory $TNF{\alpha}$ expression. $TNF{\alpha}$ expression in MDA-MB 231 cells treated with fermented soybean extracts was repressed by that extracts. $TNF{\alpha}$ inhibitors were developed as drugs for autoimmune diseases. Since fermented soybean extracts suppressed $TNF{\alpha}$ expression, it can be developed as those drugs.

EFFECTS OF NATURALLY OCCURRING DIARYHEPTANOIDS ON CYCLOOXYGENASE-2 EXPRESSION AND NF- $\textsc{k}$B ACTIVATION IN HUMAN BREAST EPITHELIAL CELLS

  • Kim, Jung-Hwan;Surh, Young-Joan
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.133-134
    • /
    • 2001
  • Abnormal regulation of the inducible form of cyclooxygenase (COX-2) has been often observed in various types of cancerous and transformed cells. Recently, targeted inhibition of COX-2 is recognized as one of the promising strategies for the prevention or treatment of cancer as well as inflammation, As part of a program to evaluate the cancer chemopreventive potential of anti-inflammatory phytochemicals, we initially determined the COX-2 inhibitory activity of some naturally occurring diarylheptanoids structurally related to curcumin.(omitted)

  • PDF

Interleukin-1β -511C/T Gene Polymorphism and Depression Related to Breast Cancer (Interleukin-1β 유전자 내 -511C/T 단일염기다형성과 유방암 관련 우울증)

  • Kim, Jae-Min;Kang, Hee-Ju;Jang, Ji-Eun;Kim, Seon-Young;Kim, Sung-Wan;Shin, Il-Seon;Park, Min-Ho;Yoon, Jung-Han;Yoon, Jin-Sang
    • Mood & Emotion
    • /
    • v.9 no.3
    • /
    • pp.189-193
    • /
    • 2011
  • Objectives : Pro-inflammatory cytokines are related to the pathophysiology of both cancer and depression, and their secretion is controlled by the transcriptional activity of particular gene polymorphisms. This study aimed to investigate whether interleukin (IL)-1β -511C/T gene polymorphism is associated with depression following mastectomy for breast cancer. Methods : A total of 309 patients with breast cancer were evaluated one week after mastectomy, and 244 (79%) were followed one year later. Depression (major+minor depressive disorders) was diagnosed according to DSM-IV criteria using the Mini International Neuropsychiatric Interview, and classified into prevalent, persistent, and incident depression. Associations of IL-1β -511C/T polymorphism with the three depressive status were estimated using logistic regression models. Results : At baseline, 74 (24%) patients were classified with prevalent depression ; and at follow up, 19 (8%) and 25 (10%) patients were classified with persistent and incident depression, respectively. The IL-1β -511T/T genotype was independently associated with prevalent and persistent depression, but not with incident depression. Conclusion : IL-1β -511T/T genotype may involve in the etiology of depression occurring in women with breast cancer who receive a mastectomy.

Expression of Cox-2 and Bcl-2 in Paget's Disease of the Breast

  • Alikanoglu, Arsenal Sezgin;Yildirim, Mustafa;Suren, Dinc;Tutus, Birsel;Kaya, Vildan;Topal, Cumhur Selcuk;Keser, Sevinc;Karadayi, Ayse Nimet;Kapucuoglu, Fatma Nilgun;Ayva, Sebnem;Gunduz, Seyda
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.1041-1045
    • /
    • 2015
  • Background: Paget's disease (PD) is a rare form of intraepithelial adenocarcinoma that involves breast and extramammarian tissues. It is often associated with ductal carcinoma in situ and/or invasive ductal cancer. Molecular pathways that play a role in development of Paget's disease are stil unclear. Expression patterns of Cox-2 and bcl-2 were therefore assessed. Materials and Methods: Patients with a histopathological diagnosis of Paget's disease were included in this study. Patient files were analysed retrospectively. Results: Invasive cancer was diagnosed in 35 (76.1%) of the patients, 7 (15.2%) had ductal carcinoma in situ and 4 (8.7%) patients had no associated neoplasm. Twenty four (52.2%) patients showed COX-2 expression in Paget cells whereas no expression was seen in 22 (47.8%) patients. No relation was found between COX-2 expression and the lesion underlying Paget's disease (p=0.518). Bcl-2 expression in Paget cells was found positive in 12 (26.1%) and negative in 27 (58,7%) cases. There was no relation between Bcl-2 expression and the lesion accompanying Paget's disease (p=0.412). No relation was observed between COX-2 expression and Bcl-2 expression (p=0.389). Conclusions: In breast cancer, COX-2 expression is associated with poor prognostic factors. As COX-2 expression increases the tendency to metastasize also increases. In our study we found a significantly high COX-2 expression in Paget's disease of the breast. We suggest that COX-2 expression and inflammatory processes may play a role in pathogenesis of the Paget's disease of the breast.

Apoptotic Effects of Resveratrol via mTOR and COX-2 Signal Pathways in MCF-7 Breast Cancer Cells (MCF-7 유방암 세포에서 mTOR-COX-2 신호경로를 통한 resveratrol의 apoptosis 효과)

  • Lee, Sol-Hwa;Lee, Hye-Yeon;Park, Song-Yi;Park, Ock-Jin;Kim, Young-Min
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1288-1294
    • /
    • 2011
  • Resveratrol, a kind of phytochemical, is presented in grape skins. Resveratorl exerts antiproliferative, anti-cancer and pro-apoptotic activities in cancer cells. Mammalian target of rapamycin (mTOR) is a critical regulator of cellular growth and proliferation, and it is known to be a strategic target for anti-cancer therapeutic uses. mTOR is a major downstream of the PI3K/Akt pathway, which is activated in various cancer cells. It also plays an important role in the survival, proliferation and angiogenesis of cells. Cyclooxygenase-2 (COX-2) is an important protein that mediates inflammatory processes. It plays an important role in various tumors by affecting cell proliferation, mitosis, apoptosis and angiogenesis. In this study, we have investigated the effects of resveratrol on apoptosis through mTOR and COX-2 expression in MCF-7 breast cancer cells. The treatment of resveratrol with different concentrations inhibited proliferation of MCF-7. The data showed that resveratrol induced apoptotic cell death of cancer cells and decreased mTOR and COX-2 expression. These results suggest that resveratrol induces apoptosis of MCF-7 breast cancer cells by inhibiting mTOR and COX-2 expression.

Methyl Linderone Suppresses TPA-Stimulated IL-8 and MMP-9 Expression Via the ERK/STAT3 Pathway in MCF-7 Breast Cancer Cells

  • Yoon, Jae-Hwan;Pham, Thu-Huyen;Lee, Jintak;Lee, Jiyon;Ryu, Hyung-Won;Oh, Sei-Ryang;Oh, Jae-Wook;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.325-332
    • /
    • 2020
  • Methyl linderone (ML), a cyclo-pentenedione, was isolated from the fruit of Lindera erythrocarpa Makino (family Lauraceae). This plant has well-known anti-inflammatory effects; however, the anti-cancer effects of ML have not yet been reported. Thus, in the present study we investigated the effects of ML on the metastasis of human breast cancer cells. We used 12-O-tetradecanoyl phorbol-13-acetate (TPA)-stimulated MCF-7 cells as the cell model to study the effects of ML on invasion and migration. ML was found to reduce the invasion and migration rate of TPA-stimulated MCF-7 cells. Moreover, it inhibited two metastasis-related factors, matrix metalloproteinase-9 (MMP-9) and interleukin-8 (IL-8), at the mRNA and protein expression levels, in TPA-treated MCF-7 cells. The mechanism by which ML exerted these effects was through the inhibition of translocation of activator protein-1 (AP-1) and signal transducer and activator of transcription-3 (STAT3), mediated via phosphorylation of extracellular signal-regulated kinase (ERK). Taken together, our findings indicated that ML attenuated the TPA-stimulated invasion and migration of MCF-7 cells by suppressing the phosphorylation of ERK and its downstream factors, AP-1 and STAT3. Therefore, ML is a potential agent for the treatment of breast cancer metastasis.

Anti-cancer effect of glabridin by reduction of extracellular vesicles secretion in MDA-MB-231 human breast cancer cells (유방암세포에서 세포외 소포체 분비 감소를 통한 glabridin의 항암효과)

  • Choi, Sang-Hun;Hwang, Jin-Hyeon;Baek, Moon-Chang;Cho, Young-Eun
    • Journal of Nutrition and Health
    • /
    • v.55 no.2
    • /
    • pp.240-249
    • /
    • 2022
  • Purpose: Glabridin (GD) is a bio-available isoflavane isolated from the root extract of licorice (Glycyrrhiza glabra L.). It exhibits a variety of pharmacological activities such as anti-inflammatory and anti-oxidant activities. However, extracellular vesicles (EVs) secretion and the anti-cancer mechanism of action remains largely unknown. The present study investigates the anticancer effects of GD by determining the inhibition of EVs secretion in the human breast cancer cell line, MDA-MB-231. Methods: Cell viability, reactive oxygen species (ROS) production, migration, invasion rate, and vascular endothelial growth factor (VEGF) concentration were assessed in MDA-MB-231 cells treated with increasing concentrations of GD (0.1, 1, 5, 10, 20 µM). Subsequently, EV secretion and exosomal DEL-1 protein expression were evaluated to determine the anticancer effects of GD. Results: The results showed that GD significantly inhibited the cell proliferation of MDA-MB-231 cells in a dose- or time-dependent manner. Also, ROS production and apoptosis marker protein cleaved caspase-3 were significantly increased in GD-treated MDA-MB-231, compared to control. Furthermore, GD exposure resulted in significantly decreased not only migration and invasion rates but also the VEGF concentration, thereby contributing to a reduction in angiogenesis. Interestingly, the concentration and number of EVs as well as EV marker proteins, such as CD63 and TSG101, were decreased in GD-treated MDA-MB-231 cells. Markedly, extracellular matrix protein DEL-1 as angiogenesis factor was decreased in EVs from GD-treated MDA-MB-231 cells. Conclusion: This study identifies that the anti-cancer molecular mechanism of GD is exerted via inhibition of angiogenesis and EVs secretion, indicating the potential of GD as a chemotherapeutic agent for breast cancer.

Cytokinetic Study of MCF-7 Cells Treated with Commercial and Recombinant Bromelain

  • Fouz, Nour;Amid, Azura;Hashim, Yumi Zuhanis Has-Yun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6709-6714
    • /
    • 2013
  • Background: Breast cancer is a leading cause of death in women. The available chemotherapy drugs have been associated with many side effects. Bromelain has novel medicinal qualities including anti-inflammatory, anti-thrombotic, fibrinolytic and anti-cancer functions. Commercially available bromelain is obtained through tedious methods; therefore, recombinant bromelain may provide a cheaper and simpler choice with similar quality. Materials and Methods: This study aimed to assess the effects of commercial and recombinant bromelain on the cytokinetic behavior of MCF-7 breast cancer cells and their potential as therapeutic alternatives in cancer treatment. Cytotoxic activities of commercial and recombinant bromelain were determined using (sulforhodamine) SRB assay. Next, cell viability assays were conducted to determine effects of commercial and recombinant bromelain on MCF-7 cell cytokinetic behavior. Finally, the established growth kinetic data were used to modify a model that predicts the effects of commercial and recombinant bromelain on MCF-7 cells. Results: Commercial and recombinant bromelain exerted strong effects towards decreasing the cell viability of MCF-7 cells with $IC_{50}$ values of 5.13 ${\mu}g/mL$ and 6.25 ${\mu}g/mL$, respectively, compared to taxol with an $IC_{50}$ value of 0.063 ${\mu}g/mL$. The present results indicate that commercial and recombinant bromelain both have anti-proliferative activity, reduced the number of cell generations from 3.92 to 2.81 for commercial bromelain and to 2.86 for recombinant bromelain, while with taxol reduction was to 3.12. Microscopic observation of bromelain-treated MCF-7 cells demonstrated detachment. Inhibition activity was verified with growth rates decreased dynamically from 0.009 $h^{-1}$ to 0.0059 $h^{-1}$ for commercial bromelain and to 0.0063 $h^{-1}$ for recombinant bromelain. Conclusions: Commercial and recombinant bromelain both affect cytokinetics of MCF-7 cells by decreasing cell viability, demonstrating similar strength to taxol.