• 제목/요약/키워드: inflammation-related protein

검색결과 411건 처리시간 0.026초

Analysis of the Apoptotic Mechanisms of Snake Venom Toxin on Inflammation-induced HaCaT Cell-line

  • Chun, Youl Woong;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • 제34권1호
    • /
    • pp.23-30
    • /
    • 2017
  • Objectives : In this study, the roles of Interleukin (IL)-4 and Signal transducer and activator of transcription 6 (STAT6), which have been reported to play a role in the pathogenesis of inflammation and cancer, were evaluated in snake venom toxin (SVT)-induced apoptosis. Methods : Inflammation was induced in human HaCaT kerationocytes, by lipopolysaccharide (LPS; $1{\mu}g/mL$) or tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), followed by treatment with SVT (0, 1, or $2{\mu}g/mL$). Cell viability was assessed by MTT assays after 24 h, and the expression of levels of IL-4, STAT6, and the apoptosis-related proteins p53, Bax, and Bcl-2 were evaluated by western blotting. Electro mobility shift assays (EMSAs) were performed to evaluate the DNA binding capacity of STAT6. Results : MTT assays showed that inflammation-induced growth of HaCaT cells following LPS or TNF-${\alpha}$ stimulation was inhibited by SVT. Western blot analysis showed that p53 and Bax, which promote apoptosis, were increased, whereas that of Bcl-2, an anti-apoptotic protein, was decreased in a concentration-dependent manner in LPS- or TNF-${\alpha}$-induced HaCaT cells following treatment with SVT. Moreover, following treatment of HaCaT cells with LPS, IL-4 concentrations were increased, and treatment with SVT further increased IL-4 expression in a concentration-dependent manner. Western blotting and EMSAs showed that the phosphorylated form of STAT6 was increased in HaCaT cells in the context of LPS- or TNF-${\alpha}$-induced inflammation in a concentration-dependent manner, concomitant with an increase in the DNA binding activity of STAT6. Conclusion : SVT can effectively promote apoptosis in HaCaT cells in the presence of inflammation through a pathway involving IL-4 and STAT6.

Fecal Calprotectin and Cow's Milk-Related-Symptoms Score in Children with Cow's Milk Protein Allergy

  • Sahar Zain-Alabedeen;Noha Kamel;Mona Amin;Angharad Vernon-Roberts ;Andrew S Day;Abdelmoneim Khashana
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제26권1호
    • /
    • pp.43-49
    • /
    • 2023
  • Purpose: The cow's milk-related-symptom-score (CoMiSS) tool was developed as an awareness tool for the assessment of cow's milk-related symptoms in infants or children. Fecal calprotectin (FC) is a noninvasive biomarker of gut inflammation that can be measured in serum and stool. This study aimed to investigate the relationship between FC levels and CoMiSS scores in infants with cow's milk protein allergy. Methods: Infants (aged 6-12 months) who were allergic to cow's milk protein were enrolled prospectively. Following completion of the CoMiSS scoring, the infants were divided into group 1 (positive CoMiSS scores ≥12) and group 2 (negative CoMiSS scores <12). FC was measured using immunoassay. Results: Of the 120 infants enrolled in this study, 60 (50.0%) had positive CoMiSS scores (group 1), while 60 (50.0%) had negative scores (group 2). The mean FC level was higher in the infants in group 1 than those in group 2 (2,934.57 ㎍/g vs. 955.13 ㎍/g; p<0.001). In addition, there was a positive correlation between FC and CoMiSS scores (R=0.168, p<0.0001). A FC level of 1,700 ㎍/g provided a sensitivity of 98.3%, specificity of 93.3%, and accuracy of 95.8% for the diagnosis of cow's milk protein allergy (CMPA). Conclusion: FC measurement may have a role in the assessing infants with CMPA.

Anti-inflammatory effect of sulforaphane on LPS-stimulated RAW 264.7 cells and ob/ob mice

  • Ranaweera, Sachithra S.;Dissanayake, Chanuri Y.;Natraj, Premkumar;Lee, Young Jae;Han, Chang-Hoon
    • Journal of Veterinary Science
    • /
    • 제21권6호
    • /
    • pp.91.1-91.15
    • /
    • 2020
  • Background: Sulforaphane (SFN) is an isothiocyanate compound present in cruciferous vegetables. Although the anti-inflammatory effects of SFN have been reported, the precise mechanism related to the inflammatory genes is poorly understood. Objectives: This study examined the relationship between the anti-inflammatory effects of SFN and the differential gene expression pattern in SFN treated ob/ob mice. Methods: Nitric oxide (NO) level was measured using a Griess assay. The inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression levels were analyzed by Western blot analysis. Pro-inflammatory cytokines (tumor necrosis factor [TNF]-α, interleukin [IL]-1β, and IL-6) were measured by enzyme-linked immunosorbent assay (ELISA). RNA sequencing analysis was performed to evaluate the differential gene expression in the liver of ob/ob mice. Results: The SFN treatment significantly attenuated the iNOS and COX-2 expression levels and inhibited NO, TNF-α, IL-1β, and IL-6 production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. RNA sequencing analysis showed that the expression levels of 28 genes related to inflammation were up-regulated (> 2-fold), and six genes were down-regulated (< 0.6-fold) in the control ob/ob mice compared to normal mice. In contrast, the gene expression levels were restored to the normal level by SFN. The protein-protein interaction (PPI) network showed that chemokine ligand (Cxcl14, Ccl1, Ccl3, Ccl4, Ccl17) and chemokine receptor (Ccr3, Cxcr1, Ccr10) were located in close proximity and formed a "functional cluster" in the middle of the network. Conclusions: The overall results suggest that SFN has a potent anti-inflammatory effect by normalizing the expression levels of the genes related to inflammation that were perturbed in ob/ob mice.

Protective effects of Hizikia fusiforme and Chlorella sp. extracts against lead acetate-induced hepatotoxicity in rats

  • Park, Joo hyun;Choi, Jeong-Wook;Lee, Min-Kyeong;Choi, Youn Hee;Nam, Taek-Jeong
    • Fisheries and Aquatic Sciences
    • /
    • 제22권1호
    • /
    • pp.2.1-2.9
    • /
    • 2019
  • In the present study, the protective effects of Hizikia fusiforme and Chlorella sp. extracts on lead acetate-induced hepatotoxicity were investigated. Hepatic damage was induced in rats by intraperitoneal (i.p.) injection of lead acetate and the protective effects of H. fusiforme (HZK) and Chlorella sp. (CHL) extracts on lead acetate-induced hepatic damage in rat liver were examined. The results revealed significantly increased glutamic oxaloacetate and glutamic pyruvic transaminase levels in the group treated with lead acetate only (Pb group); oral administration of HZK and CHL extracts tended to decrease the enzyme levels similar to those observed in the control group. Regarding antioxidant enzymes, superoxide dismutase activity was increased in the Pb group and decreased in a concentration-dependent manner in the HZK- and CHL-treated groups. Glutathione levels were increased in a concentration-dependent manner in the HZK- and CHL-treated groups. There was no significant difference in catalase activity. Western blot analysis showed inflammation-related protein expression in mitogen-activated protein kinase and Nrf2 pathways was affected in the HZK- and CHL-treated groups. Therefore, HZK and CHL extracts exerted antioxidant and anti-inflammatory effects against lead acetate-induced hepatotoxicity. Development of functional health foods containing HZK and CHL extracts, which have hepatoprotective effects against inhaled lead acetate, should be considered.

UCP2 KO mice exhibit ameliorated obesity and inflammation induced by high-fat diet feeding

  • Kim, Do Hyun;Kim, Hye Jin;Seong, Je Kyung
    • BMB Reports
    • /
    • 제55권10호
    • /
    • pp.500-505
    • /
    • 2022
  • Uncoupling protein 2 (Ucp2) was first introduced as a member of Uncoupling protein family and a regulator of ROS formation; however, its role in adipose tissue is not fully understood. In the present study, we have investigated the role of Ucp2 against high-fat diet (HFD)-induced obesity in epididymal white adipose tissue (eWAT) and browning of inguinal white adipose tissue (iWAT). Diet-induced obesity is closely related to macrophage infiltration and the secretion of pro-inflammatory cytokines. Macrophages surround adipocytes and form a crown-like-structure (CLS). Some reports have suggested that CLS formation requires adipocyte apoptosis. After 12 weeks of HFD challenge, Ucp2 knockout (KO) mice maintained relatively lean phenotypes compared to wild-type (WT) mice. In eWAT, macrophage infiltration, CLS formation, and inflammatory cytokines were reduced in HFD KO mice compared to HFD WT mice. Surprisingly, we found that apoptotic signals were also reduced in the Ucp2 KO mice. Our study suggests that Ucp2 deficiency may prevent diet-induced obesity by regulating adipocyte apoptosis. However, Ucp2 deficiency did not affect the browning capacity of iWAT.

Increased 26S proteasome non-ATPase regulatory subunit 1 in the aqueous humor of patients with age-related macular degeneration

  • Lee, Hyungwoo;Choi, Ae Jin;Kang, Gum-Yong;Park, Hyung Soon;Kim, Hyung Chan;Lim, Hyunjung Jade;Chung, Hyewon
    • BMB Reports
    • /
    • 제47권5호
    • /
    • pp.292-297
    • /
    • 2014
  • Age-related macular degeneration (AMD) is the leading cause of blindness in the world. Evidence indicates that the suppression of the ubiquitin-proteasome system (UPS) contributes to the accumulation of toxic proteins and inflammation in retinal pigment epithelium (RPE), the functional abnormalities and/or the degeneration of which are believed to be the initiators and major pathologies of AMD. To identify new protein associations with the altered UPS in AMD, we used LC-ESI-MS/MS to perform a proteomic analysis of the aqueous humor (AH) of AMD patients and matched control subjects. Six UPS-related proteins were present in the AH of the patients and control subjects. Four of the proteins, including 26S proteasome non-ATPase regulatory subunit 1 (Rpn2), were increased in patients, according to semi-quantitative proteomic profiling. An LC-MRM assay revealed a significant increase of Rpn2 in 15 AMD patients compared to the control subjects, suggesting that this protein could be a biomarker for AMD.

Dec2 inhibits macrophage pyroptosis to promote periodontal homeostasis

  • He, Dawei;Li, Xiaoyan;Zhang, Fengzhu;Wang, Chen;Liu, Yi;Bhawal, Ujjal K.;Sun, Jiang
    • Journal of Periodontal and Implant Science
    • /
    • 제52권1호
    • /
    • pp.28-38
    • /
    • 2022
  • Purpose: Macrophages play crucial roles as early responders to bacterial pathogens and promote/ or impede chronic inflammation in various tissues. Periodontal macrophage-induced pyroptosis results in physiological and pathological inflammatory responses. The transcription factor Dec2 is involved in regulating immune function and inflammatory processes. To characterize the potential unknown role of Dec2 in the innate immune system, we sought to elucidate the mechanism that may alleviate macrophage pyroptosis in periodontal inflammation. Methods: Porphyromonas gingivalis lipopolysaccharide (LPS) was used to induce pyroptosis in RAW 264.7 macrophages. Subsequently, we established an LPS-stimulated Dec2 overexpression cellular model in macrophages. Human chronic periodontitis tissues were employed to evaluate potential changes in inflammatory marker expression and pyroptosis. Finally, the effects of Dec2 deficiency on inflammation and pyroptosis were characterized in a P. gingivalis-treated experimental periodontitis Dec2-knockout mouse model. Results: Macrophages treated with LPS revealed significantly increased messenger RNA expression levels of Dec2 and interleukin (IL)-1β. Dec2 overexpression reduced IL-1β expression in macrophages treated with LPS. Overexpression of Dec2 also repressed the cleavage of gasdermin D (GSDMD), and the expression of caspase-11 was concurrently reduced in macrophages treated with LPS. Human chronic periodontitis tissues showed significantly higher gingival inflammation and pyroptosis-related protein expression than non-periodontitis tissues. In vivo, P. gingivalis-challenged mice exhibited a significant augmentation of F4/80, tumor necrosis factor-α, and IL-1β. Dec2 deficiency markedly induced GSDMD expression in the periodontal ligament of P. gingivalis-challenged mice. Conclusions: Our findings indicate that Dec2 deficiency exacerbated P. gingivalis LPS-induced periodontal inflammation and GSDMD-mediated pyroptosis. Collectively, our results present novel insights into the molecular functions of macrophage pyroptosis and document an unforeseen role of Dec2 in pyroptosis.

건강기능식품의 체중 감량 효과 (The Effect of Health Functional Food on Body Weight Reduction)

  • 주남석
    • 비만대사연구학술지
    • /
    • 제1권2호
    • /
    • pp.59-65
    • /
    • 2022
  • Obesity is a serious health concern, which has been linked to an increased risk for cardiovascular diseases and some cancers. The traditional obesity control program is expensive. Moreover, it is difficult to maintain a healthy body weight as well as reduce body fat. The long-term use of effective and tolerable medication is carefully recommended to control body weight. In addition to obesity control medications, health functional foods, related to body weight control, have become popular in the commercial market. Known mechanisms include lipolysis, appetite control, inflammation reduction, and lean body mass maintenance. Previous clinical trials have documented the efficacy of some health functional foods; however, there are limitations. Studies on the potential roles and efficacy of some health functional foods, including caffeine, green tea, protein supplement, probiotics, and arginine, were reviewed. More large-scale and randomized placebo-controlled trials should be conducted eventually.

Histamine Releasing Factor (HRF) Evokes [3H] Dopamine Release by a Ca^{2+} - independent Pathway in Pheochromocytoma Cells

  • Seo, Ji-Hui;Kim, Hwa-Jung
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.268.2-269
    • /
    • 2002
  • The recombinant histamine-releasing factor (rHRF) has been reported to induce a secretion of histamine and cytokines from inflammation-related cell types such as basophils and eosinophils. and to function as a growth factor in immune B cells. Recently. decreased expression level of HRF protein was observed in brain of patients with Alzheimer disease and Downs syndrome. suggesting a possible significant role in neurological systems. (omitted)

  • PDF

Ginkgo biloba Leaf Extract Regulates Cell Proliferation and Gastric Cancer Cell Death

  • Kim, Da Hyun;Yang, Eun Ju;Lee, JinAh;Chang, Jeong Hyun
    • 대한의생명과학회지
    • /
    • 제28권2호
    • /
    • pp.92-100
    • /
    • 2022
  • Ginkgo biloba Leaf Extract (GBE) is an extract from leaves of the Ginkgo biloba tree, widely used as a health supplement. GBE can inhibit the proliferation of several types of tumor cell. Although it is known to have anti-cancer effects in breast cancer and skin cancer, research related to gastric cancer is still insufficient. Based on results showing anti-cancer effects on solid cancer, we aimed to determine whether GBE has similar effects on gastric cancer. In this study, the anti-cancer effect of GBE in gastric adenocarcinoma was investigated by confirming the cell proliferation inhibitory effect of AGS cells. We also evaluated whether GBE regulates expression of the tumor suppressor protein p53 and Rb. GBE has apoptotic effects on AGS cells that were confirmed by changes in anti-apoptosis protein Bcl-2, Bcl-xl and pro-apoptosis protein Bax levels. Wound healing and cell migration were also decreased by treatment with GBE. Furthermore, we verified the effects of GBE on mitogenic signaling by investigating AKT target gene expression levels and revealed downregulated Sod2 and Bcl6 expression. We also confirmed that expression of inflammation-related genes decreased in a time-dependent manner. These results indicate that GBE has an anti-cancer effect on human gastric cancer cell lines. Further research on the mechanism of the anti-cancer effect will serve as basic data for possible anti-cancer drug development.