• Title/Summary/Keyword: infinite memory

Search Result 43, Processing Time 0.03 seconds

An Alternative State Estimation Filtering Algorithm for Temporarily Uncertain Continuous Time System

  • Kim, Pyung Soo
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.588-598
    • /
    • 2020
  • An alternative state estimation filtering algorithm is designed for continuous time systems with noises as well as control input. Two kinds of estimation filters, which have different measurement memory structures, are operated selectively in order to use both filters effectively as needed. Firstly, the estimation filter with infinite memory structure is operated for a certain continuous time system. Secondly, the estimation filter with finite memory structure is operated for temporarily uncertain continuous time system. That is, depending on the presence of uncertainty, one of infinite memory structure and finite memory structure filtered estimates is operated selectively to obtain the valid estimate. A couple of test variables and declaration rule are developed to detect uncertainty presence or uncertainty absence, to operate the suitable one from two kinds of filtered estimates, and to obtain ultimately the valid filtered estimate. Through computer simulations for a continuous time aircraft engine system with different measurement memory lengths and temporary model uncertainties, the proposed state estimation filtering algorithm can work well in temporarily uncertain as well as certain continuous time systems. Moreover, the proposed state estimation filtering algorithm shows remarkable superiority to the infinite memory structure filtering when temporary uncertainties occur in succession.

ENERGY DECAY FOR A VISCOELASTIC EQUATION WITH BALAKRISHNAN-TAYLOR DAMPING INVOLVING INFINITE MEMORY AND NONLINEAR TIME-VARYING DELAY TERMS IN DYNAMICAL BOUNDARY

  • Soufiane Benkouider;Abita Rahmoune
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.943-966
    • /
    • 2023
  • In this paper, we study the initial-boundary value problem for viscoelastic wave equations of Kirchhoff type with Balakrishnan-Taylor damping terms in the presence of the infinite memory and external time-varying delay. For a certain class of relaxation functions and certain initial data, we prove that the decay rate of the solution energy is similar to that of relaxation function which is not necessarily of exponential or polynomial type. Also, we show another stability with g satisfying some general growth at infinity.

Improved Weighted Integral Method and Application to Analysis of Semi-infinite Domain (개선된 가중적분법과 반무한 영역의 해석)

  • 노혁천;최창근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.369-376
    • /
    • 2002
  • The stochastic analysis of semi-infinite domain is presented using the weighted integral method, which is improved to include the higher order terms in expanding the displacement vector. To improve the weighted integral method, the Lagrangian remainder is taken into account in the expansion of the status variable with respect to the mean value of the random variables. In the resulting formulae only the 'proportionality coefficients' are introduced in the resulting equation, therefore no additional computation time and memory requirement is needed. The equations are applied in analyzing the semi-infinite domain. The results obtained by the improved weighted integral method are reasonable and are in good agreement with those of the Monte Carlo simulation. To model the semi-infinite domain, the Bettess's infinite element is adopted, where the theoretical decomposition of the strain-displacement matrix to calculate the deviatoric stiffness of the semi-infinite domains is introduced. The calculated value of mean and the covariance of the displacement are revealed to be larger than those given by the finite domain assumptions which is thought to be rational and should be considered in the design of structures on semi-infinite domains.

  • PDF

Stationary bootstrapping for structural break tests for a heterogeneous autoregressive model

  • Hwang, Eunju;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.4
    • /
    • pp.367-382
    • /
    • 2017
  • We consider an infinite-order long-memory heterogeneous autoregressive (HAR) model, which is motivated by a long-memory property of realized volatilities (RVs), as an extension of the finite order HAR-RV model. We develop bootstrap tests for structural mean or variance changes in the infinite-order HAR model via stationary bootstrapping. A functional central limit theorem is proved for stationary bootstrap sample, which enables us to develop stationary bootstrap cumulative sum (CUSUM) tests: a bootstrap test for mean break and a bootstrap test for variance break. Consistencies of the bootstrap null distributions of the CUSUM tests are proved. Consistencies of the bootstrap CUSUM tests are also proved under alternative hypotheses of mean or variance changes. A Monte-Carlo simulation shows that stationary bootstrapping improves the sizes of existing tests.

Nonvolatile Ferroelectric Memory Devices Based on Black Phosphorus Nanosheet Field-Effect Transistors

  • Lee, Hyo-Seon;Lee, Yun-Jae;Ham, So-Ra;Lee, Yeong-Taek;Hwang, Do-Gyeong;Choe, Won-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.281.2-281.2
    • /
    • 2016
  • Two-dimensional van der Waals (2D vdWs) materials have been extensively studied for future electronics and materials sciences due to their unique properties. Among them, black phosphorous (BP) has shown infinite potential for various device applications because of its high mobility and direct narrow band gap (~0.3 eV). In this work, we demonstrate a few-nm thick BP-based nonvolatile memory devices with an well-known poly(vinylidenefluoride-trifluoroethylene) [P(VDF-TrFE)] ferroelectric polymer gate insulator. Our BP ferroelectric memory devices show the highest linear mobility value of $1159cm^2/Vs$ with a $10^3$ on/off current ratio in our knowledge. Moreover, we successfully fabricate the ferroelectric complementary metal-oxide-semiconductor (CMOS) memory inverter circuits, combined with an n-type $MoS_2$ nanosheet transistor. Our memory CMOS inverter circuits show clear memory properties with a high output voltage memory efficiency of 95%. We thus conclude that the results of our ferroelectric memory devices exhibit promising perspectives for the future of 2D nanoelectronics and material science. More and advanced details will be discussed in the meeting.

  • PDF

Memory, Records and Archival Justice (기억, 기록, 아카이브 정의(正義))

  • Jang, Dae Hwan;Kim, Ik Han
    • The Korean Journal of Archival Studies
    • /
    • no.59
    • /
    • pp.277-320
    • /
    • 2019
  • 'Memory discourse' takes an important role in the paradigm shift of archival science. Memory points to the limitation of 'records as evidence' that had been assumed to be representable and redefines the record as an infinite interpretable medium by captured memory. Now, recordkeeping are given a new question as 'what world to remember' beyond 'how to remember the world' between 'visible' records and 'invisible' memories. And, the power of memory's personal, present, and everyday aspect is linked to the argument that the keeping of memory and records itself can take a social justice role. In this article, we examine the western archival science's memory discourse landscape comprehensively and reconstruct it to examine the possibility of memories' social justice or archival justice.

Effect of generalized thermoelasticity materials with memory

  • Baksi, Arup;Roy, Bidyut Kumar;Bera, Rasajit Kumar
    • Structural Engineering and Mechanics
    • /
    • v.25 no.5
    • /
    • pp.597-611
    • /
    • 2007
  • Many works have been done in classical theory of thermoelasticity in materials with memory by researchers like Nunziato, Chen and Gurtine and many others. No work is located in generalized thermoelasticity regarding materials with memory till date. The present paper deals with the wave propagation in materials with memory in generalized thermoelasticity. Plane progressive waves and Rayleigh waves have been discussed in details. In the classical theory of heat conduction it was observed that heat propagates with infinite speed. This paradox has been removed in the present discussion. The set of governing equations has been developed in the present analysis. The results of wave velocity and attenuation coefficient corresponding to low and high frequency have been obtained. For thermal wave the results show appreciable differences with those in the usual thermoelasticity theory.

A Distributed Control Architecture for Advanced Testing In Realtime

  • Thoen Bradford K.;Laplace Patrick N.
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.563-570
    • /
    • 2006
  • Distributed control architecture is based on sharing control and data between multiple nodes on a network Communication and task sharing can be distributed between multiple control computers. Although many communication protocols exist, such as TCP/IP and UDP, they do not have the determinism that realtime control demands. Fiber-optic reflective shared memory creates the opportunity for realtime distributed control. This architecture allows control and computational tasks to be divided between multiple systems and operate in a deterministic realtime environment. One such shared memory architecture is based on Curtiss-Wright ScramNET family of fiber-optic reflective memory. MTS has built seismic and structural control software and hardware capable of utilizing ScramNET shared memory, opening up infinite possibilities in research and new capabilities in Hybrid and Model-In-The-Loop control.

  • PDF

A Study on the Analysis of Semi-infinite Array Structures for Defect Analysis in Frequency Selective Radome (주파수 선택적 레이돔 결함요소 해석을 위한 반-무한배열구조 해석 방안에 관한 연구)

  • Lee, Sang-Hwa;Oh, Won-Seok;Kim, Yoon-Jae;Hong, Ic-Pyo
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • In this paper, a semi-infinite array analysis method is proposed to analyze the defects that may occur during the fabrication of the frequency selective radome. In the analysis of N×N finite array structure using 3D analysis software, much analysis time and memory are required, whereas the semi-infinite array structure analysis proposed in this paper can predict relatively accurate electromagnetic performance while reducing the analysis time. In comparison with the results of the periodic simulation, the simulation of the semi-infinite array structure confirmed the error within ±3%. To verify the results of the simulation, the results were compared with the measured results, and the same tendency at the point of performance change and similar performance degradation at the band of interest were investigated. Using the proposed semi infinite array structure analysis, it is confirmed that the analysis of defects in the electromagnetic periodic structure is possible.

Time Domain Analysis of Spar Platform in Waves (파랑 중 스파 플랫폼의 시간영역 해석)

  • LEE Ho-Young;LIM Choon-Gyu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.167-171
    • /
    • 2004
  • The Spar platform with deep draft is characterized as effective structure in extreme wave condition, which has larger natural period than that of waves in sea. In this paper, the time simulation of motion responses of Spar with catenary mooring line is presented in irregular waves. The memory effect is modeled by added mass at infinite frequency and convolution integrals in terms of wave damping coefficients. The added mass, wave damping coefficients and wave exciting forces are obtained from three-dimensional panel method in the frequency domain. The motion equations are consisted of forces for inetia, memory effect, hydrostatic restoring, wave exciting and mooring line. The forces of mooring line are modeled as quasi-static catenary cable.

  • PDF