• Title/Summary/Keyword: inference operation

Search Result 156, Processing Time 0.028 seconds

An Automatic Control System of the Blood Pressure of Patients Under Surgical Operation

  • Furutani, Eiko;Araki, Mituhiko;Kan, Shugen;Aung, Tun;Onodera, Hisashi;Imamura, Masayuki;Shirakami, Gotaro;Maetani, Shunzo
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.39-54
    • /
    • 2004
  • We developed an automatic blood pressure control system to maintain the blood pressure of patients at a substantially low level during a surgical operation. The developed system discharges two functions, continuous feedback control of the mean arterial pressure (MAP) by a state-predictive servo controller and risk control based on the inference by fuzzy-like logics and rules using measured data. Twenty-eight clinical applications were made beginning in November 1995, and the effects of the automatic blood pressure control on the operation time and on bleeding were assessed affirmatively by means of Wilcoxon testing. This paper essentially reports the engineering details of the control system.

Intelligent Vehicle Management Using Location-Based Control with Dispatching and Geographic Information

  • Kim Dong-Ho;Kim Jin-Suk
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.249-252
    • /
    • 2004
  • The automatic determination of vehicle operation status as well as continuous tracking of vehicle location with intelligent management is one of major elements to achieve the goals. Especially, vehicle operation status can only be analyzed in terms of expert experiences with real-time location data with scheduling information. However the scheduling information of individual vehicle is very difficult to be interpreted immediately because there are hundreds of thousand vehicles are run at the same time in the national wide range workplace. In this paper, we propose the location-based knowledge management system(LKMs) using the active trajectory analysis method with routing and scheduling information to cope with the problems. This system uses an inference technology with dispatching and geographic information to generate the logistics knowledge that can be furnished to the manager in the central vehicle monitoring and controlling center.

  • PDF

Rule based CAD/CAM integration for turning (Rule base방법에 의한 선반가공의 CAD/CAM integration)

  • 임종혁;박지형;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.290-295
    • /
    • 1989
  • This paper proposes a Expert CAPP System for integrating CAD/CAM of rotational work-part by rule based approach. The CAD/CAPP integration is performed by the recognition of machined features from the 2-D CAD data (IGES) file. Selecting functions of the process planning are performed in modularized rule base by forward chaining inference, and operation sequences are determined by means of heuristic search algorithm. For CAPP/CAM integration, post-processor generates NC code from route sheet file. This system coded in OPS5 and C language on PC/AT, and EMCO CNC lathe interfaced with PC through DNC and RS-232C.

  • PDF

Building of an Intelligent Ship's Steering Control System Based on Voice Instruction Gear Using Fuzzy Inference (퍼지추론에 의한 지능형 음성지시 조타기 제어 시스템의 구축)

  • 서기열;박계각
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1809-1815
    • /
    • 2003
  • This paper presents a human friendly system using fuzzy inference as a Part of study to embody intelligent ship. We also build intelligent ship's steering system to take advantage of speech recognition that is a part of the human friendly interface. It can bring an effect such as labor decrement in ship. In order to design the voice instruction based ship's steering gear control system, we build of the voice instruction based learning(VIBL) system based on speech recognition and intelligent learning method at first. Next, we design an quartermaster's operation model by fuzzy inference and construct PC based remote control system. Finally, we applied the unposed control system to the miniature ship and verified its effectiveness.

Multi-DNN Acceleration Techniques for Embedded Systems with Tucker Decomposition and Hidden-layer-based Parallel Processing (터커 분해 및 은닉층 병렬처리를 통한 임베디드 시스템의 다중 DNN 가속화 기법)

  • Kim, Ji-Min;Kim, In-Mo;Kim, Myung-Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.842-849
    • /
    • 2022
  • With the development of deep learning technology, there are many cases of using DNNs in embedded systems such as unmanned vehicles, drones, and robotics. Typically, in the case of an autonomous driving system, it is crucial to run several DNNs which have high accuracy results and large computation amount at the same time. However, running multiple DNNs simultaneously in an embedded system with relatively low performance increases the time required for the inference. This phenomenon may cause a problem of performing an abnormal function because the operation according to the inference result is not performed in time. To solve this problem, the solution proposed in this paper first reduces the computation by applying the Tucker decomposition to DNN models with big computation amount, and then, make DNN models run in parallel as much as possible in the unit of hidden layer inside the GPU. The experimental result shows that the DNN inference time decreases by up to 75.6% compared to the case before applying the proposed technique.

An Expert System for Fault Section Diagnosis in Power Systems using the information including operating times of actuated relays and tripped circuit breakers (보호 계전기와 차단기의 동작 순서를 고려한 전력 시스템 사고 구간 진단을 위한 전문가 시스템)

  • Min, S.W.;Lee, S.H.;Park, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.125-127
    • /
    • 2000
  • Multiple faults are hard to diagnose correctly because the operation of circuit breakers tripped by former fault changes the topology of power systems. The information including operating time of actuated relays and tripped circuit breakers is used for considering changes of the network topology in fault section diagnosis. This paper presents a method for fault section diagnosis using a set of matrices which represent changes of the network topology due to operation of circuit breakers. The proposed method uses fuzzy relation to cope with the unavoidable uncertainties imposed on fault section diagnosis of power systems. The inference executed by the proposed matrices provides the fault section candidates in the form of a matrix made up of the degree of membership. Experimental studies for real power systems reveal usefulness of the proposed technique to diagnose multiple faults.

  • PDF

Development of Distance Relay Algorithm Using ACI Technique on Underground Power Cable System (ACI 기법을 이용한 지중송전계통 거리계전알고리즘 개발)

  • Jung, Chae-Kyun;Lee, Jong-Beom;Roh, Seok-Beom;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.676-678
    • /
    • 2005
  • In underground power cable system, the apparent impedance at the relaying point can be changed because of the complicated configuration such as the various earth resistance and the operation of sheath voltage limiter (SVL). They have a bad effect on the distance relay operation Therefore, in this paper, in order to solve this problem, the authors are going to anly the advanced computational technique(ACI) of FR-FIS(Fuzzy Relation-based Fuzzy Inference System).

  • PDF

A Study on the Neuro-Fuzzy Control for an Inverted Pendulum System (도립진자 시스템의 뉴로-퍼지 제어에 관한 연구)

  • 소명옥;류길수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.11-19
    • /
    • 1996
  • Recently, fuzzy and neural network techniques have been successfully applied to control of complex and ill-defined system in a wide variety of areas, such as robot, water purification, automatic train operation system and automatic container crane operation system, etc. In this paper, we present a neuro-fuzzy controller which unifies both fuzzy logic and multi-layered feedforward neural networks. Fuzzy logic provides a means for converting linguistic control knowledge into control actions. On the other hand, feedforward neural networks provide salient features, such as learning and parallelism. In the proposed neuro-fuzzy controller, the parameters of membership functions in the antecedent part of fuzzy inference rules are identified by using the error backpropagation algorithm as a learning rule, while the coefficients of the linear combination of input variables in the consequent part are determined by using the least square estimation method. Finally, the effectiveness of the proposed controller is verified through computer simulation of an inverted pendulum system.

  • PDF

FUZZY TORQUE CONTROL STRATEGY FOR PARALLEL HYBRID ELECTRIC VEHICLES

  • PU J.-H.;YIN C.-L.;ZHANG J.-W.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.529-536
    • /
    • 2005
  • This paper presents a novel design of a fuzzy control strategy (FCS) based on torque distribution for parallel hybrid electric vehicles (HEVs). An empirical load-regulating vehicle operation strategy is developed on the basis of analysis of the components efficiency map data and the overall energy conversion efficiency. The aim of the strategy is to optimize the fuel economy and balance the battery state-of-charge (SOC), while satisfying the vehicle performance and drivability requirements. In order to accomplish this strategy, a fuzzy inference engine with a rule-base extracted from the empirical strategy is designed, which works as the kernel of a fuzzy torque distribution controller to determine the optimal distribution of the driver torque request between the engine and the motor. Simulation results reveal that compared with the conventional strategy which uses precise threshold parameters the proposed FCS improves fuel economy as well as maintains better battery SOC within its operation range.

Type-2 Fuzzy Logic Predictive Control of a Grid Connected Wind Power Systems with Integrated Active Power Filter Capabilities

  • Hamouda, Noureddine;Benalla, Hocine;Hemsas, Kameleddine;Babes, Badreddine;Petzoldt, Jurgen;Ellinger, Thomas;Hamouda, Cherif
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1587-1599
    • /
    • 2017
  • This paper proposes a real-time implementation of an optimal operation of a double stage grid connected wind power system incorporating an active power filter (APF). The system is used to supply the nonlinear loads with harmonics and reactive power compensation. On the generator side, a new adaptive neuro fuzzy inference system (ANFIS) based maximum power point tracking (MPPT) control is proposed to track the maximum wind power point regardless of wind speed fluctuations. Whereas on the grid side, a modified predictive current control (PCC) algorithm is used to control the APF, and allow to ensure both compensating harmonic currents and injecting the generated power into the grid. Also a type 2 fuzzy logic controller is used to control the DC-link capacitor in order to improve the dynamic response of the APF, and to ensure a well-smoothed DC-Link capacitor voltage. The gained benefits from these proposed control algorithms are the main contribution in this work. The proposed control scheme is implemented on a small-scale wind energy conversion system (WECS) controlled by a dSPACE 1104 card. Experimental results show that the proposed T2FLC maintains the DC-Link capacitor voltage within the limit for injecting the power into the grid. In addition, the PCC of the APF guarantees a flexible settlement of real power exchanges from the WECS to the grid with a high power factor operation.