유비쿼터스 컴퓨팅 환경에서는 기존 컴퓨팅 환경에서의 사용자와 컴퓨터간의 대화형 상호작용이 아니라 물리적인 환경, 상황 등을 시스템이 인식하고 이에 따라서 사용자와의 상호 작용을 지원하는 상황 인식서비스가 중요한 요소로 자리잡고 있다. 상황 인식 서비스는 상황 인식 미들웨어로부터 전달된 상황 정보를 해석할 수 있어야 한다. 기존 연구에서 상황 인식 서비스는 상황 인식 미들웨어에서 사용하는 상황 온톨로지를 이용해서 설계되기 때문에 서비스의 실행도중 상황 온톨로지를 동적으로 변경하기 어렵다. 본 연구에서는 계층적 상황 온톨로지 관리 모델을 제안하고 이를 이용한 상황 인식 서비스 미들웨어를 설계한다. 제안한 모델은 상황 인식 서비스가 실행 중에 필요로 하는 상황 정보를 동적으로 추가할 수 있도록 함으로써 보다 유연하게 상황 인식 서비스를 운용할 수 있도록 지원한다. 또한 상황 온톨로지의 동적인 변화로 인해서 센서로부터 얻은 데이터를 상황 정보로 추론하는 과정에서 발생할 수 있는 상황 모호성(Context Uncertainty)을 해결하기 위해서 상황 충돌 해결 모델을 정의한다. 설계하는 미들웨어는 OSGi 프레임워크 위에서 구현함으로써 다양한 유비쿼터스 환경에 필요한 상황 인식 서비스의 개발 및 운용을 효과적으로 지원을 할 수 있다.
최적화기법을 포함한 종래의 전산 프로그램들은 수치적 계산과정과 그 결과에만 중점을 두고 개발되어 왔으며, 설계모델의 개발과 최적화기법의 선택 및 결과의 판단 등은 설계 전문가에 의하여 수행되어 왔다. 반면에 전문가의 경험적지식을 처리하는 지식기반시스템은 기호처리에 중점을 두고 있기 때문에 수치적 계산을 효과적으로 할 수 없다. 본 논문에서는 수치적인 계산결과만을 제공하는 최적화기법의 한계와 기호처리에 중점을 두고 있는 지식기반시스템의 한계를 극복하여, 보다 현실적인 최적설계안을 도출할 수 있는 지식기반 다목적함수 최적설계 시스템을, 최적화기법과 LISP 언어로 개발한 지식기반시스템을 통합하여 구현하고, 이를 LNG선의 최적설계 모델에 적용하여 개발된 시스템의 유용성을 보였다.
위성의 수와 복잡도가 증가함에 따라서 다양한 고장이 생기는 경우를 예측하고 고장이 발생한 경우 이를 감지하여 신속히 감지하여 처리하는 노력의 필요성이 증가하게 된다. 현재는 위성 관제소의 전문요원들이 이러한 작업을 수행하고 있지만, 많은 부분이 일상적인 작업이므로 이러한 진단 작업을 자동화할 필요성이 있다. 즉, 일상적인 작업은 전문가시스템이 수행하고, 보다 복잡하고 고차원적인 문제는 전문요원이 해결하는 방식이 바람직하다. 이 논문에서는 이러한 노력의 일환으로 인공지능의 사례기반 방식을 도입한 위성 고장진단 전문가시스템을 구축하기 위한 방법론과 이에 따른 프로토타입 시스템을 설계하고 구현하였다. 사례기반 시스템은 과거의 사례를 기억하고 있는 사례베이스를 구축하고 고장의 증상이 발생한 경우에 이러한 사례베이스로부터 가장 근사한 경우를 인덱스하여 처리하는 기능을 가지고 있다. 이 논문은 이러한 기능을 가지는 사례기반 시스템의 구조와 활용방안에 대해서 서술하고자 한다.
오늘날 일상생활에서 인간과 함께 생활하는 로봇들은 자연스러운 의사소통 방법이 요구된다. 따라서 기존의 단순한 로봇 제어 방식을 이용하여 제어하는 것 보다 실제 사람과 상호작용 하는 것과 같은 방식의 제어방식이 요구되고 있다. 기존의 연구들은 사람의 행동 자체를 인식하는 것에 초점이 맞추어져 있어서 자연스러운 의사소통을 하기 어렵다. 본 논문에서는 모바일 로봇을 제어하는 방법으로 자연스러운 손동작을 은닉 마르코프 모델(HMM: hidden markov model) 과 퍼지추론을 이용하는 방법을 제안한다. 키넥트 센서를 이용해 색상 데이터와 깊이 데이터를 획득하고 사람의 손을 검색하고 HMM과 Mamdani 퍼지추론을 이용하여 손동작을 인식한다. 인식된 결과를 로봇에게 전달하여 원하는 방향으로 이동시킨다.
의족의 자동 보행 모드 변경 알고리즘 개발에는 주로 사용되는 패턴 인식 또는 퍼지 추론 기법을 이용하지만 즉각적인 보행 환경 변화에는 대응하기 어렵다는 단점을 가진다. 이러한 한계점을 해결하고자 본 논문에서는 한 보행 주기 내 특정 보행단계에서의 보행 환경 추정을 통해 다음 걸음의 보행 모드를 자동으로 변환하는 알고리즘을 개발하였다. 제안하는 알고리즘은 마이크로 컨트롤러 내에 이식되어 운용되어야 하므로 계산량과 추정 소요 시간을 고려하여 랜덤포레스트 기반을 사용하여 개발하였다. 개발된 랜덤포레스트 기반의 보행 단계 및 환경 추정 모델은 마이크로 컨트롤러 내에 이식되어 유효성 평가를 진행하였다.
The Canton Tower is a high-rise slender structure with a height of 610 m. A structural health monitoring system has been instrumented on the structure, by which data is continuously monitored. This paper presents an investigation on the identified modal properties of the Canton Tower using ambient vibration data collected during a whole day (24 hours). A recently developed Fast Bayesian FFT method is utilized for operational modal analysis on the basis of the measured acceleration data. The approach views modal identification as an inference problem where probability is used as a measure for the relative plausibility of outcomes given a model of the structure and measured data. Focusing on the first several modes, the modal properties of this supertall slender structure are identified on non-overlapping time windows during the whole day under normal wind speed. With the identified modal parameters and the associated posterior uncertainty, the distribution of the modal parameters in the future is predicted and assessed. By defining the modal root-mean-square value in terms of the power spectral density of modal force identified, the identified natural frequencies and damping ratios versus the vibration amplitude are investigated with the associated posterior uncertainty considered. Meanwhile, the correlations between modal parameters and temperature, modal parameters and wind speed are studied. For comparison purpose, the frequency domain decomposition (FDD) method is also utilized to identify the modal parameters. The identified results obtained by the Bayesian method, the FDD method and a finite element model are compared and discussed.
The study is concerned with an approach to the design of new architectures of fuzzy neural networks and the discussion of comprehensive design methodology supporting their development. We propose an Adaptive Fuzzy Polynomial Neural Networks(APFNN) based on Fuzzy Neural Networks(FNN) and Self-organizing Networks(SON) for model identification of complex and nonlinear systems. The proposed AFPNN is generated from the mutually combined structure of both FNN and SON. The one and the other are considered as the premise and the consequence part of AFPNN, respectively. As the premise structure of AFPNN, FNN uses both the simplified fuzzy inference and error back-propagation teaming rule. The parameters of FNN are refined(optimized) using genetic algorithms(GAs). As the consequence structure of AFPNN, SON is realized by a polynomial type of mapping(linear, quadratic and modified quadratic) between input and output variables. In this study, we introduce two kinds of AFPNN architectures, namely the basic and the modified one. The basic and the modified architectures depend on the number of input variables and the order of polynomial in each layer of consequence structure. Owing to the specific features of two combined architectures, it is possible to consider the nonlinear characteristics of process system and to obtain the better output performance with superb predictive ability. The availability and feasibility of the AFPNN are discussed and illustrated with the aid of two representative numerical examples. The results show that the proposed AFPNN can produce the model with higher accuracy and predictive ability than any other method presented previously.
A down hole vertical seismic array is a sequence of instruments installed at various depths in the earth to record the ground motion at multiple points during an earthquake. Numerous studies demonstrate the unique utility of vertical seismic arrays for studying in situ site response and soil behavior. Examples are given of analyses made at two sites to show the value of data from vertical seismic arrays. The sites examined are the Lotung, Taiwan SMART1 array and a new site installed at Jingliao, Taiwan. Details of the installation of the Jingliao array are given. ARX models are theoretically the correct process models for vertical wave propagation in the layered earth, and are used to linearly map deeper sensor input signals to shallower sensor output signals. An example of Event 16 at the Lotung array is given. This same data, when examined in detail with a Bayesian inference model, can also be explained by nonlinear filters yielding commonly accepted soil degradation curves. Results from applying an ARMAX model to data from the Jingliao vertical seismic array are presented. Estimates of inter-transducer soil increment resonant frequency, shear modulus, and damping ratio are presented. The shear modulus varied from 50 to 150 MPa, and damping ratio between 8% and 15%. A new hardware monitoring system - TerraScope - is an affordable 4-D down-hole seismic monitoring system based on independent, microprocessor-controlled sensor Pods. The Pods are nominally 50 mm in diameter, and about 120 mm long. An internal 16-bit micro-controller oversees all aspects of instrumentation, eight programmable gain amplifiers, and local signal storage.
많은 응용프로그램들로부터 양질의 서비스를 제공받기 위해서 데이터 공개는 필수적이다. 하지만 원본 데이터를 그대로 공개할 경우 개인의 민감한 정보(정치적 성향, 질병 등)가 드러날 위험이 있기 때문에 원본 데이터가 아닌 재현 데이터를 생성하여 공개함으로써 프라이버시를 보존하는 많은 연구들이 제안되어왔다. 그러나 단순히 재현 데이터를 생성하여 공개하는 것은 여러 공격들(연결공격, 추론공격 등)에 의해 여전히 프라이버시 유출 위험이 존재한다. 본 논문에서는 이러한 민감한 정보의 유출을 방지하기 위해, 재현 데이터 생성 모델로 주목받고 있는 GAN에 최신 프라이버시 보호 기술인 차분 프라이버시를 적용하여 프라이버시가 보존되는 재현 데이터 생성 알고리즘을 제안한다. 생성 모델은 레이블이 있는 데이터의 효율적인 학습을 위해 CGAN을 사용하였고, 데이터의 유용성 측면을 고려하여 기존 차분 프라이버시보다 프라이버시가 완화된 Rényi 차분 프라이버시를 적용하였다. 그리고 생성된 데이터의 유용성에 대한 검증을 다양한 분류기를 통해 실시하고 비교분석하였다.
본 연구는 연구문헌의 지식구조를 반영하는 의미기반 지식조직체계의 실험적 모형을 제시하는 것을 목적으로 한다. 이를 위해 한국연구재단의 기초학문자료센터에 대한 사례분석을 하였다. 기초학문자료센터 연구성과물 DB와 학술용어 DR의 개념클래스 및 인스턴스를 대상으로 연구문헌의 지식구조를 파악하였으며, 기초학문자료센터 시스템의 학술적 이해형성 기능을 분석하였다. 또한 연구문헌의 지식구조와 색인어의 관계를 분석하였다. 이러한 분석을 통해 지식구조와 색인어의 관계구조, 26개의 연구문헌 지식구조 공리 및 11개의 의미관계 추론규칙으로 구성되는 온톨로지 모형, 즉 연구문헌의 지식구조와 그 의미관계에 의한 실험적 지식조직체계 모형을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.