• Title/Summary/Keyword: inference(reasoning)

Search Result 231, Processing Time 0.039 seconds

A Construction of Fuzzy Inference Network based on Neural Logic Network and its Search Strategy

  • Lee, Mal-rey
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2000.11a
    • /
    • pp.375-389
    • /
    • 2000
  • Fuzzy logic ignores some information in the reasoning process. Neural networks are powerful tools for the pattern processing, but, not appropriate for the logical reasoning. To model human knowledge, besides pattern processing capability, the logical reasoning capability is equally important. Another new neural network called neural logic network is able to do the logical reasoning. Because the fuzzy inference is a fuzzy logical reasoning, we construct fuzzy inference network based on the neural logic network, extending the existing rule- inference. network. And the traditional propagation rule is modified. For the search strategies to find out the belief value of a conclusion in the fuzzy inference network, we conduct a simulation to evaluate the search costs for searching sequentially and searching by means of search priorities.

  • PDF

An Inference Network for Bidirectional Approximate Reasoning Based on an Equality Measure (등가 척도에 의한 영방향 근사추론과 추론명)

  • ;Zeung Nam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.4
    • /
    • pp.138-144
    • /
    • 1994
  • An inference network is proposed as a tool for bidirectional approximate reasoning. The inference network can be designed directly from the given fuzzy data(knowledge). If a fuzzy input is given for the inference netwok, then the network renders a reasonable fuzzy output after performing approximate reasoning based on an equality measure. Conversely, due to the bidirectional structure, the network can yield its corresponding reasonable fuzzy input for a given fuzzy output. This property makes it possible to perform forward and backward reasoning in the knowledge base system.

  • PDF

Designing an Assessment to Measure Students' Inferential Reasoning in Statistics: The First Study, Development of a Test Blueprint

  • Park, Jiyoon
    • Research in Mathematical Education
    • /
    • v.17 no.4
    • /
    • pp.243-266
    • /
    • 2013
  • Accompanied with ongoing calls for reform in statistics curriculum, mathematics and statistics teachers purposefully have been reconsidering the curriculum and the content taught in statistics classes. Changes made are centered around statistical inference since teachers recognize that students struggle with understanding the ideas and concepts used in statistical reasoning. Despite the efforts to change the curriculum, studies are sparse on the topic of characterizing student learning and understanding of statistical inference. Moreover, there are no tools to evaluate students' statistical reasoning in a coherent way. In response to the need for a research instrument, in a series of research study, the researcher developed a reliable and valid measure to assess students' inferential reasoning in statistics (IRS). This paper describes processes of test blueprint development that has been conducted from review of the literature and expert reviews.

Fuzzy Inference Network and Search Strategy using Neural Logic Network (신경논리망을 이용한 퍼지추론 네트워크와 탐색전략)

  • 이말례
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.2
    • /
    • pp.189-196
    • /
    • 2001
  • Fuzzy logic ignores some information in the reasoning process. Neural networks are powerful tools for the pattern processing, but, not appropriate for the logical reasoning. To model human knowledge, besides pattern processing capability, the logical reasoning capability is equally important. Another new neural network called neural logic network is able to do the logical reasoning. Because the fuzzy inference is a fuzzy logical reasoning, we construct fuzzy inference network based on the neural logic network, extending the existing rule - inference network. and the traditional propagation rule is modified.

  • PDF

A Case-Based Reasoning Approach to Ontology Inference Engine Selection for Robust Context-Aware Services (상황인식 서비스의 안정적 운영을 위한 온톨로지 추론 엔진 선택을 위한 사례기반추론 접근법)

  • Shim, Jae-Moon;Kwon, Oh-Byung
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.2
    • /
    • pp.27-44
    • /
    • 2008
  • Owl-based ontology is useful to realize the context-aware services which are composed of the distributed and self-configuring modules. Many ontology-based inference engines are developed to infer useful information from ontology. Since these engines show the uniqueness in terms of speed and information richness, it's difficult to ensure stable operation in providing dynamic context-aware services, especially when they should deal with the complex and big-size ontology. To provide a best inference service, the purpose of this paper is to propose a novel methodology of context-aware engine selection in a contextually prompt manner Case-based reasoning is applied to identify the causality between context and inference engined to be selected. Finally, a series of experiments is performed with a novel evaluation methodology to what extent the methodology works better than competitive methods on an actual context-aware service.

Construct of Fuzzy Inference Network based on the Neural Logic Network (신경 논리 망을 기반으로 한 퍼지 추론 망 구성)

  • 이말례
    • Korean Journal of Cognitive Science
    • /
    • v.13 no.1
    • /
    • pp.13-21
    • /
    • 2002
  • Fuzzy logic ignores some information in the reasoning process. Neural network is powerful tools for the pattern processing, but, not appropriate for the logical reasoning. To model human knowledge, besides pattern processing capability, the logical reasoning capability is equally important. Another new neural network called neural logic network is able to do the logical reasoning. Because the fuzzy inference is a fuzzy logical reasoning, we construct fuzzy inference network based on the neural logic network, extending the existing rule-inference network. And the traditional propagation rule is modified. Experiments are performed to compare search costs by sequential searching and searching by priority. The experimental results show that the searching by priority is more efficient than the sequential searching as the size of the fuzzy inference network becomes larder and an the number of searching increases.

  • PDF

Z. Cao's Fuzzy Reasoning Method using Learning Ability (학습기능을 사용한 Z. Cao의 퍼지추론방식)

  • Park, Jin-Hyun;Lee, Tae-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.193-196
    • /
    • 2008
  • Z. Cao had proposed NFRM(new fuzzy reasoning method) which infers in detail using relation matrix. In spite of the small inference rules, it shows good performance than mamdani's fuzzy inference method. In this paper, we propose 2. Cao's fuzzy inference method using learning ability witch is used a gradient descent method in order to improve the performances. Because it is difficult to determine the relation matrix elements by trial and error method which is needed many hours and effort. Simulation results are applied linear and nonlinear system show that the proposed inference method has good performances.

  • PDF

Z. Cao's Fuzzy Reasoning Method using Learning Ability (학습기능을 이용한 Z. Cao의 퍼지추론방식)

  • Park, Jin-Hyun;Lee, Tae-Hwan;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1591-1598
    • /
    • 2008
  • Z. Cao had proposed NFRM(new fuzzy reasoning method) which infers in detail using relation matrix. In spite of the small inference rules, it shows good performance than mamdani's fuzzy inference method. In this paper, we propose Z. Cao's fuzzy inference method with learning ability which is used a gradient descent method in order to improve the performances. It is hard to determine the relation matrix elements by trial and error method. Because this method is needed many hours and effort. Simulation results are applied nonlinear systems show that the proposed inference method using a gradient descent method has good performances.

MIMO Fuzzy Reasoning Method using Learning Ability (학습기능을 사용한 MIMO 퍼지추론 방식)

  • Park, Jin-Hyun;Lee, Tae-Hwan;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.175-178
    • /
    • 2008
  • Z. Cao had proposed NFRM(new fuzzy reasoning method) which infers in detail using relation matrix. In spite of the small inference rules, it shows good performance than mamdani's fuzzy inference method. But the most of fuzzy systems are difficult to make fuzzy inference rules in the case of MIMO system. The past days, We had proposed the MIMO fuzzy inference which had extended a Z. Cao's fuzzy inference to handle MIMO system. But many times and effort needed to determine the relation matrix elements of MIMO fuzzy inference by heuristic and trial and error method in order to improve inference performances. In this paper, we propose a MIMO fuzzy inference method with the learning ability witch is used a gradient descent method in order to improve the performances. Through the computer simulation studies for the inverse kinematics problem of 2-axis robot, we show that proposed inference method using a gradient descent method has good performances.

  • PDF

Electrical Fire Cause Diagnosis System based on Fuzzy Inference

  • Lee, Jong-Ho;Kim, Doo-Hyun
    • International Journal of Safety
    • /
    • v.4 no.2
    • /
    • pp.12-17
    • /
    • 2005
  • This paper aims at the development of an knowledge base for an electrical fire cause diagnosis system using the entity relation database. The relation database which provides a very simple but powerful way of representing data is widely used. The system focused on database construction and cause diagnosis can diagnose the causes of electrical fires easily and efficiently. In order to store and access to the information concerned with electrical fires, the key index items which identify electrical fires uniquely are derived out. The knowledge base consists of a case base which contains information from the past fires and a rule base with rules from expertise. To implement the knowledge base, Access 2000, one of DB development tools under windows environment and Visual Basic 6.0 are used as a DB building tool. For the reasoning technique, a mixed reasoning approach of a case based inference and a rule based inference has been adopted. Knowledge-based reasoning could present the cause of a newly occurred fire to be diagnosed by searching the knowledge base for reasonable matching. The knowledge-based database has not only searching functions with multiple attributes by using the collected various information(such as fire evidence, structure, and weather of a fire scene), but also more improved diagnosis functions which can be easily wed for the electrical fire cause diagnosis system.