• Title/Summary/Keyword: inertial navigation systems (INS)

Search Result 116, Processing Time 0.024 seconds

Time Synchronization Error and Calibration in Integrated GPS/INS Systems

  • Ding, Weidong;Wang, Jinling;Li, Yong;Mumford, Peter;Rizos, Chris
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.59-67
    • /
    • 2008
  • The necessity for the precise time synchronization of measurement data from multiple sensors is widely recognized in the field of global positioning system/inertial navigation system (GPS/INS) integration. Having precise time synchronization is critical for achieving high data fusion performance. The limitations and advantages of various time synchronization scenarios and existing solutions are investigated in this paper. A criterion for evaluating synchronization accuracy requirements is derived on the basis of a comparison of the Kalman filter innovation series and the platform dynamics. An innovative time synchronization solution using a counter and two latching registers is proposed. The proposed solution has been implemented with off-the-shelf components and tested. The resolution and accuracy analysis shows that the proposed solution can achieve a time synchronization accuracy of 0.1 ms if INS can provide a hard-wired timing signal. A synchronization accuracy of 2 ms was achieved when the test system was used to synchronize a low-grade micro-electromechanical inertial measurement unit (IMU), which has only an RS-232 data output interface.

  • PDF

Design and Evaluation of INS Initial Alignment under Vibration Environment of Aircraft Run-up (항공기 Run-Up 진동 환경에서의 관성항법장치 초기 정렬 방법 설계 및 평가)

  • Yu, Haesung;Lee, Inseop;Oh, JuHyun;Kim, CheonJoong;Park, Heung-won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.691-698
    • /
    • 2015
  • Inertial Navigation Systems (INS) are widely used as the main navigation device for aircraft. To get the initial attitude, the INS requires the initial alignment before navigation starts. An aircraft also needs an engine test procedure that causes some vibrations before flight. An INS can't be aligned in a vibration environment so the initial alignment is performed before the aircraft engine test. Therefore, the initial alignment time of an INS has been a major factor in limiting an aircraft's takeoff response time. In this paper, we designed an initial alignment algorithm that can be executed even in disturbances such as aircraft run-up. We demonstrated verification of the algorithm that is embedded on the real INS and testing methods to evaluate the alignment of the INS. We also analyzed the test results of the proposed initial alignment algorithm that is performed during a real aircraft run-up.

Implementation of a Hybrid Navigation System for a Mobile Robot by Using INS/GPS and Indirect Feedback Kalman Filter (INS/GPS와 간접 되먹임 칼만 필터를 사용하는 이동 로봇의 복합 항법 시스템의 구현)

  • Kim, Min J.;Joo, Moon G.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.6
    • /
    • pp.373-379
    • /
    • 2015
  • A hybrid navigation system is implemented to apply for a mobile robot. The hybrid navigation system consists of an inertial navigation system and a global positioning system. The inertial navigation system quickly calculates the position and the attitude of the robot by integrating directional accelerations, angular speed, and heading angle from a strap-down inertial measurement unit, but the results are available for a short time since it tends to diverge quickly. Global positioning system delivers position, heading angle, and traveling speed stably, but it has large deviation with slow update. Therefore, a hybrid navigation system uses the result from an inertial navigation system and corrects the result with the help of the global positioning system where an indirect feedback Kalman filter is used. We implement and confirm the performance of the hybrid navigation system through driving a car attaching it.

Design of a Control Display Unit for Commercial Inertial Navigation Systems (상용 관성항법시스템용 CDU(Control Display Unit) 설계)

  • Hwang, Dong-Hwan;Kim, Jeong-Won;Shin, Dae-Sik;Lee, Sang-Jeong;Park, Yong-Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.38-46
    • /
    • 2007
  • This paper proposes a design method of a CDU(Control Display Unit) for commercial INS(Inertial Navigation Systems). In order to guarantee reusability and extendability, the design method is based on the class programming of the Windows operating system. Since the CDU has abstracted functions and variables, it can be interfaced with any INS. It is also easy to extend the designed functions using inheritance and polymorphism of the class. In order to show usefulness of the CDU, it has been implemented for the H-726 INS.

DVL-RPM based Velocity Filter Design for a Performance Improvement Underwater Integrated Navigation System (수중운동체 복합항법 성능 향상을 위한 DVL/RPM 기반의 속도 필터 설계)

  • Yoo, Tae Suk;Yoon, Seon Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.774-781
    • /
    • 2013
  • The purpose of this paper is to design a DVL-RPM based VKF (Velocity Kalman Filter) design for a performance improvement underwater integrated navigation system. The proposed approach relies on a VKF, augmented by a altitude from Echo-sounder based switching architecture to yield robust performance, even when DVL (Doppler Velocity Log) exceeds the measurement range and the measured value is unable to be valid. The proposed approach relies on two parts: 1) Indirect feedback navigation Kalman filter design, 2) VKF design. To evaluate proposed method, we compare the results of the VKF aided navigation system with simulation result from a PINS (Pure Inertial Navigation System) and conventional INS-DVL method. Simulations illustrate the effectiveness of the underwater navigation system assisted by the additional DVL-RPM based VKF in underwater environment.

Transfer Alignment Algorithm using Robust filter (강인필터를 이용한 전달정렬 알고리즘)

  • 양철관;심덕선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.26-26
    • /
    • 2000
  • We study on the velocity matching algorithm for transfer alignment of inertial navigation system(INS) using robust H$_2$ filter. We suggest an uncertainty model for INS and apply the suggested discrete robust H$_2$ filter to the uncertainty model compared with kalman filter, the discrete robust H$_2$ filter is shown by simulation to have good performance of alignment time and accuracy.

  • PDF

Fault Detection and Isolation using navigation performance-based Threshold for Redundant Inertial Sensors

  • Yang, Cheol-Kwan;Shim, Duk-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2576-2581
    • /
    • 2003
  • We consider fault detection and isolation (FDI) problem for inertial navigation systems (INS) which use redundant inertial sensors and propose an FDI method using average of multiple parity vectors which reduce false alarm and wrong isolation, and improve correct isolation. We suggest optimal isolation threshold based on navigation performance, and suggest optimal sample number to obtain short detection time and to enhance detectability of faults little larger than threshold.

  • PDF

IMM-based INS/EM-Log Integrated Underwater Navigation with Sea Current Estimation Function

  • Cho, Seong Yun;Ju, Hojin;Cha, Jaehyuck;Park, Chan Gook;Yoo, Kijeong;Park, Chanju
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.3
    • /
    • pp.165-173
    • /
    • 2018
  • Underwater vehicles use Inertial Navigation System (INS) with high-performance Inertial Measurement Unit (IMU) for high precision navigation. However, when underwater navigation is performed for a long time, the INS error gradually diverges, therefore, an integrated navigation method using auxiliary sensors is used to solve this problem. In terms of underwater vehicles, the vertical axis error is primarily compensated through Vertical Channel Damping (VCD) using a depth gauge, and an integrated navigation filter can be designed to perform horizontal axis error and sensor error correction using a speedometer such as Electromagnetic-Log (EM-Log). However, since EM-Log outputs the forward direction relative speed of the vehicle with respect to the sea and sea current, INS correction filter using this may cause a rather large error. Although it is possible to design proper filters if the exact model of the sea current is known, it is impossible to know the accurate model in reality. Therefore, this study proposes an INS/EM-Log integrated navigation filter with the function to estimate sea current using an Interacting Multiple Model (IMM) filters, and the performance of this filter is analyzed through a simulation performed in various environments.

The AGPS/INS Integrated Navigation System Design Using Triple Difference Technique (삼중 차분 기법을 이용한 AGPS/INS 통합 항법 시스템 설계)

  • 오상헌;박찬식;이상정;황동환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.9
    • /
    • pp.736-744
    • /
    • 2003
  • The GPS attitude output or carrier phase observables can be effectively utilized to compensate the attitude error of the strapdown inertial navigation system. However, when the integer ambiguity is not correctly resolved and/or a cycle slip occurs, an erroneous GPS output can be obtained. If the erroneous GPS information is directly applied to the AGPS/INS integration system, the performance of the system can be rapidly degraded. This paper proposes an AGPS/INS integration system using the triple difference carrier phase observables. The proposed integration system contains a cycle slip detection algorithm, in which inertial information is combined. Computer simulations and van test were performed to verify the proposed integration system. The results show that the proposed system gives an accurate and reliable navigation solution even when the integer ambiguity is not correct and the cycle slip occurs.