• 제목/요약/키워드: inertial current

검색결과 76건 처리시간 0.026초

Observation of Semi-diurnal Internal Tides and Near-inertial Waves at the Shelf Break of the East China Sea

  • Park, Jae-Hun;Lie, Heung-Jae;Guo, Binghuo
    • Ocean and Polar Research
    • /
    • 제33권4호
    • /
    • pp.409-419
    • /
    • 2011
  • Semi-diurnal internal tides and near-inertial waves are investigated using moored current meter measurements at four sites along the shelf break of the East China Sea during August 1987 and May-June 1988. Each mooring is equipped with four current meters spanning from near surface to near bottom. Spectral analyses of all current data reveal dominant spectra at the semi-diurnal frequency band, where the upper and lower current measurements show out-of-phase relationship between them with significant coherences. These are consistent with typical characteristics of the first-mode semi-diurnal internal tide. Strong intensification of the near-bottom baroclinic currents is observed only at one site, where the ratio of the bottom slope to the slope of the internal-wave characteristics at the semi-diurnal frequency is close to unity. An energetic near-inertial wave event is observed during the first half of May-June 1988 observation at two mooring sites. Rotary spectra reveal that the most dominant signal is clockwise rotating motion at the near-inertial frequency band. Upward phase and downward energy propagations, shown in time-depth contour plots of near-inertial bandpass filtered currents, are confirmed by cross correlations between the upper- and lower-layer current measurements. The upward-propagating phase speed is estimated to be about 0.13 cm $s^{-1}$ at both sites. Significant coherences and in-phase relationships of near-inertial currents at the same or similar depths between the two sites are observed in spite of their long distance of about 110 km.

Characteristics of Semi-diurnal and Diurnal Currents at a KOGA Station over the East China Sea Shelf

  • Noh, Su-Yun;Seung, Young Ho;Lim, Eun-Pyo;You, Hak-Yeol
    • Ocean and Polar Research
    • /
    • 제36권1호
    • /
    • pp.59-69
    • /
    • 2014
  • The long-term mooring performed at a KOGA station, located at about $30^{\circ}20^{\prime}N$, $126^{\circ}12^{\prime}E$ in the East China Sea shelf, shows some different behaviors between "semi-diurnal" and "diurnal currents" defined as the currents with periods around, respectively, a half day and a day. They appear to be predominantly tidal having significant coherences with sea level changes around the semi-diurnal and diurnal frequencies. The "semi-diurnal current" is strongly barotropic all year round. However, contrastingly, it is largely baroclinic in summer in the area about 70 km nearer to the continental slope, referred to as the "slope-area", as was found in previous current observations. The "diurnal current" of tidal origin is strongly barotropic in winter. In spring and summer, however, it becomes more baroclinic although it still remains largely barotropic, also showing more of its barotropic nature than in the "slope-area". The inertial oscillation contributing to the "diurnal current" appears to be more prominent when the current is baroclinic, indicating the important role played by stratification in generation of inertial oscillations. Downward energy propagation of inertial oscillation is not observed, suggesting that it is not created at the surface by wind. Considering that the study area is both near a critical latitude and proximity to the continental slope, it is suggested that parametric subharmonic instability (PSI) plays a significant role in creating the baroclinic inertial oscillation.

해조류 속도 오차 추정을 통한 속도보정항법 알고리즘 (Velocity Aided Navigation Algorithm to Estimate Current Velocity Error)

  • 최윤혁
    • 한국항행학회논문지
    • /
    • 제23권3호
    • /
    • pp.245-250
    • /
    • 2019
  • 관성항법장치는 시간 경과에 따라 관성센서 및 초기정렬 오차로 인해 항법 오차가 발생한다. 이를 보상하기 위한 방법으로 위성항법시스템 및 속도계 등을 이용하여 보정항법을 수행한다. 수중 환경에서는 GNSS 신호가 통하지 않기 때문에, 수중운동체에 탑재한 관성항법장치는 주로 속도계 보조센서를 이용하여 보정항법을 수행한다. 속도계 보조센서는 DVL, EM-Log, RPM이 있으며, 시스템 환경에 따라서 센서 종류가 적용된다. 본 논문은 고속 및 심해 환경에서 운용되는 관성항법장치의 RPM 속도보정항법을 설계하였다. 또한 직진 방향의 성분을 갖는 RPM 속도계의 한계를 보완하며, 해조류 속도 오차를 보상하는 알고리즘을 제안하였다. 제안한 알고리즘은 몬테카를로 시뮬레이션 결과를 통해 성능을 입증하였다.

Predicting the seismic behavior of torsionally-unbalanced RC building using resistance eccentricity

  • Abegaz, Ruth A.;Kim, In-Ho;Lee, Han Seon
    • Structural Engineering and Mechanics
    • /
    • 제83권1호
    • /
    • pp.1-17
    • /
    • 2022
  • The static design approach in the current code implies that the inherent torsional moment represents the state of zero inertial torsional moments at the center of mass (CM). However, both experimental and analytical results prove the existence of a large amount of the inertial torsional moment at the CM. Also, the definition of eccentricity by engineers, which is referred to as the resistance eccentricity, is defined as the distance between the center of mass and the center of resistance, which is conceptually different from the static eccentricity in the current codes, defined as the arm length about the center of rotation. The difference in the definitions of eccentricity should be made clear to avoid confusion about the torsion design. This study proposed prediction equations as a function of resistance eccentricity based on a resistance eccentricity model with advantages of (1) the recognition of the existence of torsional moment at the CM, (2) the avoidance of the confusion by using resistance eccentricity instead of the design eccentricity, and (3) a clear relationship of applied inertial forces at the CM and resisting forces. These predictions are compared with the seismic responses obtained from time-history analyses of a five-story building structure under moderate and severe earthquakes. Then, the trend of the resistance eccentricity corresponding to the maximum edge drift is investigated for elastic and inelastic responses. The comparison given in this study shows that these prediction equations can serve as a useful reference for the prediction in both the elastic and the inelastic ranges.

IMM-based INS/EM-Log Integrated Underwater Navigation with Sea Current Estimation Function

  • Cho, Seong Yun;Ju, Hojin;Cha, Jaehyuck;Park, Chan Gook;Yoo, Kijeong;Park, Chanju
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제7권3호
    • /
    • pp.165-173
    • /
    • 2018
  • Underwater vehicles use Inertial Navigation System (INS) with high-performance Inertial Measurement Unit (IMU) for high precision navigation. However, when underwater navigation is performed for a long time, the INS error gradually diverges, therefore, an integrated navigation method using auxiliary sensors is used to solve this problem. In terms of underwater vehicles, the vertical axis error is primarily compensated through Vertical Channel Damping (VCD) using a depth gauge, and an integrated navigation filter can be designed to perform horizontal axis error and sensor error correction using a speedometer such as Electromagnetic-Log (EM-Log). However, since EM-Log outputs the forward direction relative speed of the vehicle with respect to the sea and sea current, INS correction filter using this may cause a rather large error. Although it is possible to design proper filters if the exact model of the sea current is known, it is impossible to know the accurate model in reality. Therefore, this study proposes an INS/EM-Log integrated navigation filter with the function to estimate sea current using an Interacting Multiple Model (IMM) filters, and the performance of this filter is analyzed through a simulation performed in various environments.

비정형 환경 내 지도 작성과 자율주행을 위한 GNSS-라이다-관성 상태 추정 시스템 (Tightly-Coupled GNSS-LiDAR-Inertial State Estimator for Mapping and Autonomous Driving)

  • 길현재;이동재;송관형;안승욱;김아영
    • 로봇학회논문지
    • /
    • 제18권1호
    • /
    • pp.72-81
    • /
    • 2023
  • We introduce tightly-coupled GNSS-LiDAR-Inertial state estimator, which is capable of SLAM (Simultaneously Localization and Mapping) and autonomous driving. Long term drift is one of the main sources of estimation error, and some LiDAR SLAM framework utilize loop closure to overcome this error. However, when loop closing event happens, one's current state could change abruptly and pose some safety issues on drivers. Directly utilizing GNSS (Global Navigation Satellite System) positioning information could help alleviating this problem, but accurate information is not always available and inaccurate vertical positioning issues still exist. We thus propose our method which tightly couples raw GNSS measurements into LiDAR-Inertial SLAM framework which can handle satellite positioning information regardless of its uncertainty. Also, with NLOS (Non-light-of-sight) satellite signal handling, we can estimate our states more smoothly and accurately. With several autonomous driving tests on AGV (Autonomous Ground Vehicle), we verified that our method can be applied to real-world problem.

기상뜰개로 관측된 동해에서의 취송류 (Wind-driven Current in the East Sea Observed from Mini-met Drifters)

  • 이동규
    • Ocean and Polar Research
    • /
    • 제36권2호
    • /
    • pp.103-110
    • /
    • 2014
  • A wind-driven current in the East Sea from Lagrangian measurements of wind and current at 15 m using MiniMet drifters was analyzed. Spectral analysis of the current from 217 pieces of a 10 day-long time series shows the dominant energy at the inertial frequency for the current at 15 m. Wind has energy peaks at a 0.2-0.5 cycles per day (cpd) frequency band. The power spectrum of the clockwise rotating component is predominant for the current and was 1.5-2 times larger than the anticlockwise rotating component for wind. Co-spectra between the wind and current show two peak frequency bands at subinertial frequency and 0.5-0.3 cpd. Coherences between the wind and current at those peak frequencies are significant with 95% confidence and phase differences were $90-100^{\circ}$. From the phase differences, the efolding depth is estimated as 17 m and this e-folding depth is smaller than the estimation by Chereskin's (1999) 25 m using a moored Acoustic Doppler Current Profiler and an anemometer installed at the surface buoy. The angle between the wind-driven current (or ageostrophic current) and wind from this study was also much larger than the global estimate by Rio and Hernandez (2003) using reanalysis wind and drifters. The possible explanation for the discrepancy comes from the fact that the current is driven by a wind of smaller length scale than 250 km but the satellite or the reanalysis products do not resolve winds of length scale smaller than 250 km. Large rms differences between Mini-Met and QuickSCAT wind on spatial lags smaller than 175 km substantiate this explanation.

Evidence of Vertical Mixing Caused by High Frequency Internal Waves along the Eastern Coast of Korea

  • Han, In-Seong;Lee, Ju;Jang, Lee-Hyun;Suh, Young-Sang;Seong, Ki-Tack
    • Fisheries and Aquatic Sciences
    • /
    • 제11권1호
    • /
    • pp.41-49
    • /
    • 2008
  • Internal waves and internal tides occur frequently along the eastern coast of Korea. During the spring-tide period in April 2003, the East Korean Warm Current (EKWC) flowed near the Korean East Coast Farming Forecast System (KECFFS; a moored oceanographic measurement system), creating a strong thermocline at the intermediate layer. Weakened stratification and well-mixed water appeared frequently around the KECFFS, with duration of approximately 1 day. The results suggest the following scenario. Baroclinic motion related to the internal tide generated high frequency internal waves around the thermocline. The breaking of those waves then created turbulence around the thermocline. After well-mixed water appeared, a current component with perpendicular direction to the EKWC appeared within the inertial period. The change in stratification around the KECFFS locally broke the geostrophic balance as a transient state. This local vertical mixing formed an ageostrophic current within the inertial period.

농용 무인 헬리콥터의 자세추정을 위한 관성센서의 성능 평가 (Evaluation of Inertial Measurement Sensors for Attitude Estimation of Agricultural Unmanned Helicopter)

  • 배영환;오민석;구영모
    • Current Research on Agriculture and Life Sciences
    • /
    • 제32권2호
    • /
    • pp.79-84
    • /
    • 2014
  • 본 논문에서는 저가, 저전력 및 소형의 IMU를 구성하기 위한 MEMS 관성 센서를 이용하여 자세 정보를 제공받는 ARHES에 위의 센서를 사용하기 위해 자이로 센서 및 가속도센서의 데이터 출력 특성을 검증하여 오차 및 정확도를 분석하였다. 센서 실험을 위하여 진자 실험 장치를 제작하였고, 진자 운동에 대한 센서 데이터를 수집하였다. 이론적인 수식을 유추하여 센서 데이터의 정확성 분석을 위한 기준 값으로 설정하였다. 센서값과 이론값을 비교하면 각속도에서 4.32~5.72%, 가속도에서 x-, z-축 방향에 대하여 각각 3.53~6.74% 및 3.91~4.16%의 오차율을 나타냈다. 진자실험 장치를 이용한 센서 검증에서 무인헬리콥터에 사용될 센서로서 적합한 것으로 평가되었으며 이는 짐벌장치 등을 이용한 자세추정 알고리즘을 구성하는데 기초가 되었다. 또한, 더욱 정밀한 실험을 위해서는 온도 등 주변 환경 요인에 대한 보정이 요구된다.

시간변화적 바람에 따른 넓은 천해에서의 해수유랑 (ON TRANSPORTS DRIVEN BY TIME-VARYING WINDS IN HORIZONTALLY UNBOUNDED SHALLOW SEAS)

  • 강용균
    • 한국해양학회지
    • /
    • 제17권2호
    • /
    • pp.41-50
    • /
    • 1982
  • 수평적으로 무한히 넓은 천해에 시간에 따라 크기와 방향이 바뀌는 바람이 불 때의 해수의 유량transports)에 대한 이론적인 계산을 할 수 있는 모델을 만들 었다. 이 모델에서 사용하는 선형화된 이론식은 가속력, 편향력(Coriolis force), 바람의 응력(wind stress) 및 저면 마찰력을 포함하고 있으며, 이 모델로부터 해수 유량에 대한 다음과 같은 결과를 얻었다. 일정한 바람이 계속 불 때의 해수유량은 해저면 마찰로 인하여 바람 오른쪽 방향 90 보다 작다. 바람이 불기 시작한 후의 천이상태(transient state)의 유량은 정상류적(steady)인 에크만류( Ekman current) 에다가 시간이 지남에 따라서 크기가 감소하는 관성진동(inertial oscillation)과의 합성으로 나타난다. 바람의 크기가 정현적(sinrsoidal)으로 바뀌는 경우는 유량 벡터 는 바람 변화의 주기와 같은 시간동안 일주회전을 하는 유량타원(transport ellipse) 을 그린다. 바람의 방향이 바뀔 경우 해수유량은 자유관성진동(free inertial oscillation)과 강제진동의 합으로 나타나는데, 이 경우 강제진동의 주기는 바람 방향의 회전주기(rotation period)와 같다. 이 이론적인 해수유량모델은 해에서 시간에 따라 바람이 바뀔 경우 해수와 영양염의 이동에 대한 해석을 하는데 유용 하다.

  • PDF