• Title/Summary/Keyword: inertial algorithm

Search Result 290, Processing Time 0.021 seconds

Numerical Stability Improvement Technique for Indirect Feedback Kalman Filter in Delayed-Measurement Systems (시간지연을 고려한 간접 되먹임 구조 칼만필터의 수치안정성 향상 기법)

  • Nam, Seongho;Sung, Changky;Kim, Taewon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.25-32
    • /
    • 2017
  • Most of weapon systems use aided navigation system which integrates inertial navigation and aiding sensors to compensate the INS errors increasing with the passage of time. Various aid sensors can be applied such as Global Navigation Satellite System (GNSS), radar, barometer, etc., but there might exist time delay caused by signal processing or transferring aid information. This time delay leads out-of-sequence measurements (OOSM) systems. Previously, optimal and suboptimal measurment update method for OOSM systems, where the time delay length are known, are proposed. However, previous algorithm does not guarantee the positive definite property of covariance matrix. In order to improve numerical stability for aided navigation using delayed-measurement, this paper proposes a new measurement covariance update algorithm be similar to Joseph-form in Kalman filter. Futhermore, we propose how to implement it in indirect feedback Kalman filter structure, which is commonly used in aided navigation systems, for time-delayed measurement systems. Simulation and vehicle test results show effectiveness of a proposed algorithm.

Research on the Method of a Composite Navigation Algorithm Using Aircraft Recorder Data (비행기록자료를 이용한 복합항법 알고리즘 구성)

  • Kim, Jae-Hyung;Lyou, Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.462-471
    • /
    • 2008
  • Flight recoder is used to analyze the accident factors and prevent the accident. In the analysis of the flight recorder, the most important factor is how to estimate the precise location of the flight. Traditional aviation navigation is based on stable sensors such as DME and VOR. In order to enhance the precision of the location estimation, the integrated navigation algorithm is designed to incorporate DME, Air data sensors and INS(Inertial Navigation System). The results demonstrate that the proposed algorithm can achieve better accuracy, comparing with the traditional navigation schemes, in flight location estimation.

ROLL AND PITCH ESTIMATION VIA AN ACCELEROMETER ARRAY AND SENSOR NETWORKS

  • Baek, W.;Song, B.;Kim, Y.;Hong, S.K.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.753-760
    • /
    • 2007
  • In this paper, a roll and pitch estimation algorithm using a set of accelerometers and wireless sensor networks(S/N) is presented for use in a passenger vehicle. While an inertial measurement unit(IMU) is generally used for roll/pitch estimation, performance may be degraded in the presence of longitudinal acceleration and yaw motion. To compensate for this performance degradation, a new roll and pitch estimation algorithm is proposed that uses an accelerometer array, global positioning system(GPS) and in-vehicle networks to get information from yaw rate and roll rate sensors. Angular acceleration and roll and pitch approximation are first calculated based on vehicle kinematics. A discrete Kalman filter is then applied to estimate both roll and pitch more precisely by reducing noise from the running engine and from road disturbance. Finally, the feasibility of the proposed algorithm is shown by comparing its performance experimentally with that of an IMU in the framework of an indoor test platform as well as a test vehicle.

Adaptive control of rotationally non-linear asymmetric structures under seismic loads

  • Amini, Fereidoun;Rezazadeh, Hassan;Afshar, Majid Amin
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.721-730
    • /
    • 2018
  • This paper aims to inspect the effectiveness of the Simple Adaptive Control Method (SACM) to control the response of asymmetric buildings with rotationally non-linear behavior under seismic loads. SACM is a direct control method and was previously used to improve the performance of linear and non-linear structures. In most of these studies, the modeled structures were two-dimensional shear buildings. In reality, the building plans might be asymmetric, which cause the buildings to experience torsional motions under earthquake excitation. In this study, SACM is used to improve the performance of asymmetric buildings, and unlike conventional linear models, the non-linear inertial coupling terms are considered in the equations of motion. SACM performance is compared with the Linear Quadratic Regulator (LQR) algorithm. Moreover, the LQR algorithm is modified, so that it is appropriate for rotationally non-linear buildings. Active tuned mass dampers are used to improve the performance of the modeled buildings. The results show that SACM is successful in reducing the response of asymmetric buildings with rotationally non-linear behavior under earthquake excitation. Furthermore, the results of the SACM were very close to those of the LQR algorithm.

Evolutionary Shape Optimization of Flexbeam Sections of a Bearingless Helicopter Rotor

  • Dhadwal, Manoj Kumar;Jung, Sung Nam;Kim, Tae Joo
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.207-212
    • /
    • 2014
  • The shape optimization of composite flexbeam sections of a bearingless helicopter rotor is studied using a finite element (FE) sectional analysis integrated with an efficient evolutionary optimization algorithm called particle swarm assisted genetic algorithm (PSGA). The sectional optimization framework is developed by automating the processes for geometry and mesh generation, and the sectional analysis to compute the elastic and inertial properties. Several section shapes are explored, modeled using quadratic B-splines with control points as design variables, through a multiobjective design optimization aiming minimum torsional stiffness, lag bending stiffness, and sectional mass while maximizing the critical strength ratio. The constraints are imposed on the mass, stiffnesses, and critical strength ratio corresponding to multiple design load cases. The optimal results reveal a simpler and better feasible section with double-H shape compared to the triple-H shape of the baseline where reductions of 9.46%, 67.44% and 30% each are reported in torsional stiffness, lag bending stiffness, and sectional mass, respectively, with critical strength ratio greater than 1.5.

Estimation Algorithm of Vehicle Roll Angle and Control Strategy of Roll Mitigation Force Distribution (차량 롤 각 추정 알고리즘 및 롤 저감력 분배 제어 전략)

  • Chung, Seunghwan;Lee, Hyeongcheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.633-641
    • /
    • 2015
  • The ROM (roll over mitigation) system is a next-generation suspension system that can improve vehicle-driving stability and ride comfort. Currently, mass-produced safety systems, such as ESC (electronic stability control) and ECS (electronic control suspension), enable measurements of longitudinal and lateral acceleration as well as yaw rate through inertial sensor clusters, but they lack direct measurements of the roll angle. Therefore, in this paper, a roll angle estimation algorithm from ESC system sensors and tire normal force has been proposed. Furthermore, this study presents a method for roll over mitigation force distribution between the front and rear of a ROM system. Performance and reliability of the roll angle estimation and roll over mitigation force distribution were investigated through simulations. The simulation results showed that the proposed control algorithm and strategy are reliable during vehicle rollovers.

Head Tracker System Using Two Infrared Cameras (두 대의 적외선 카메라를 이용한 헤드 트랙커 시스템)

  • 홍석기;박찬국
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.81-87
    • /
    • 2006
  • In this paper, an experimental optical head tracker system is designed and constructed. The system is composed of the infrared LEDs and two infrared CCD cameras to filter out the interference of another light in the limited environment like the cockpit. Then the optical head tracker algorithm is designed by using the feature detection algorithm and the 3D motion estimation algorithm. The feature detection algorithm, used to obtain the 2D position coordinates of the features on the image plane, is implemented by using the thresholding and the masking techniques. The 3D motion estimation algorithm which estimates the motion of a pilot's head is implemented by using the extended Kalman filter (EKF). Also, we used the precise rate table to verify the performance of the experimental optical head tracker system and compared the rotational performance of this system with the inertial sensor.

Development of AUV's Waypoint Guidance Law and Verification by HILS (무인잠수정의 경로점 유도 법칙 설계 및 HILS 검증)

  • Hwang, Jong-Hyon;Yoo, Tae-Suk;Han, Yongsu;Kim, Hyun Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1417-1423
    • /
    • 2020
  • This paper proposes a waypoint guidance algorithm for the Autonomous Underwater Vehicle(AUV). The proposed simplified guidance algorithm is presented, which is combined LOS guidance and cross-track guidance for path following. Cross-track error is calculated using the position of the AUV and reference path. LOS guidance and cross-track guidance are appropriately changed according to cross-track error. And the stability of the system has been improved using variable cross-track control gain by cross-track error. Also, in this paper, navigation hardware in-the loop simulation(HILS) is implemented to verify navigation algorithm of AUV that performs combined navigation using inertial navigation device and doppler velocity log(DVL). Finally, we design integrated system HILS (including navigation HILS) for performance verification of guidance algorithm of the autonomous underwater vehicle. By comparing the sea test result with HILS result, the proposed guidance algorithm and HILS configuration were confirmed be correct.

Lever Arm Error Compensation of GPS/INS Integrated Navigation by Velocity Measurements (속도 측정치를 활용한 GPS/INS 통합 항법의 Lever arm 오차 보상)

  • Park, Je Doo;Kim, Minwoo;Kim, Hee Sung;Lee, Je Young;Lee, Hyung Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.6
    • /
    • pp.481-487
    • /
    • 2013
  • In GPS(Global Positioning System)/INS(Inertial Navigation System) integrated navigation systems, GPS antennas and an inertial measurement units are usually installed outside and inside of the vehicle, respectively. By the difference of installed locations, performance of GPS/INS integrated navigation systems is affected by lever arm errors. For more accurate navigation, lever arm errors need to be compensated correctly since it directly affects the accuracy of navigation states. This paper proposes an effective lever arm error compensation method that utilizes velocity measurements of GPS and INS. By an experiment, feasibility of the proposed algorithm is verified. It is also shown that lever arm compensation is especially important when vehicles are experiencing rotational movements.

Real time indoor positioning system using IEEE 802.15.4a and sensors (IEEE 802.15.4a와 센서를 이용한 실시간 실내위치인식 시스템)

  • Cho, Hyun-Jong;Hwang, Kwang-Il;Noh, Duck-Soo;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.850-856
    • /
    • 2012
  • Bilateration using two fixed nodes has been used in the field of the real time indoor location system in the narrow space such as building or ship passage. However, as the distance between the fixed nodes increases or any obstructions exist in their zone, it is difficult to detect the location of mobile node(user) due to the degradation of its reception ratio. In order to compensate for these problems, this paper presents, based on IEEE 802.15.4a chirp signal, a new real time indoor location system using stride measurement algorithm which can calculate the location through sensors attached to user. The proposed system consists of an ultrasonic sensor to measure the leg length, a geomagnetic sensor to recognize the user's orientation, and an inertial sensor to obtain the angle between the legs. The experimental results are shown that the proposed system has twice or more accurate output compared with conventional indoor location method in the section which is partially out of communication reachability.