• Title/Summary/Keyword: inertia force

Search Result 415, Processing Time 0.029 seconds

Dynamic analysis of a beam subjected to an eccentric rolling disk

  • Wu, Jia-Jang
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.455-470
    • /
    • 2013
  • This paper presents a theory concerning the beam element subjected to an eccentric rolling disk (or simply called the eccentric-disk-loaded beam element) such that the dynamic responses of a beam subjected to an eccentric rolling disk with its inertia force, Coriolis force and centrifugal force considered can be easily determined. To this end, the property matrices of an eccentric-disk-loaded beam element are firstly derived by means of the Lagrange's equations. Then, the overall property matrices of the entire vibrating system are determined by directly adding the property matrices of the eccentric-disk-loaded beam element to the overall ones of the entire beam itself. Finally, the Newmark direct integration method is used to solve the equations of motion for the dynamic responses of a beam subjected to an eccentric rolling disk. Some factors relating to the title problem, such as the eccentricity, radius and rotating speed of the rolling disk, and the Coriolis force and centrifugal force induced by the rolling disk are investigated. Numerical results reveal that the influence of last factors on the dynamic responses of the pinned-pinned beam is significant except the centrifugal force.

Natural Frequency Analysis of Spring-Manipulator System for Force Generation Utilizing Mechanical Resonance

  • Kobayashi, Jun;Ohkawa, Fujio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1651-1656
    • /
    • 2005
  • This paper describes a natural frequency analysis conducted to find out a suitable working area for a spring-manipulator system generating a large vibrating force with mechanical resonance. Large force generation is one of the functions that we hope for a robot. For example, a weeding robot is required to generate a large force, because some weeds have roots spreading deeply and tightly. The spring-manipulator system has a spring element as an end-effector, so it can be in a state of resonance with the elasticity of the spring element and the inertial characteristics of the manipulator. A force generation method utilizing the mechanical resonance has potential to produce a large force that cannot be realized by a static method. A method for calculating a natural frequency of a spring-manipulator system with the generalized inertia tensor is proposed. Then the suitable working area for the spring-manipulator system is identified based on a natural frequency analysis. If a spring-manipulator system operates in the suitable working area, it can sustain mechanical resonance and generate a large vibrating force. Moreover, it is shown that adding a mass at the tip of the manipulator expands the suitable working area.

  • PDF

A Study on the Characteristics of Wave Forces on Artificial Reefs (착저식 인공어초에 작용하는 파력특성에 관한 연구)

  • RYU Cheong-Ro;KIM Hyeon-Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.5
    • /
    • pp.605-612
    • /
    • 1994
  • The methods to determine the hydrodynamic coefficients for the fixed type artificial reefs which were constructed to control ecological system in coastal waters are compared and discussed by model test results. To calculate the wave forces, least square method show good agreement with the experimental results and more stability than maximum force component method or Fourier decomposition method. This modified least square method of weighting the square of measured force turned out to be the most feasible method for maximum force. Using the feasible method, hydrodynamic characteristics for artificial reefs on uniform slopes offshore and breaking zone were studied. They were properly related to Keulegan-Carpenter's number and found larger than previous results. Wave force coefficients for artificial reefs around breaking zone were distributed from 1.5 to 2.5, and the mean value was 2.0. Drag force components were more in evidence than inertia force in maximum force which is important parameter to evaluate stability for high-permeability structures. A formula for the calculation of the maximum force for artificial reefs design is proposed, using structural dimension, water particle velocity and Keulegan-Carpenter's number.

  • PDF

A Study on the Clamping Force Estimation and Failsafe Control Algorithm Design of the Electronic Wedge Brake System (Electronic Wedge Brake 시스템의 클램핑력 추정 및 Failsafe 제어 알고리즘 설계에 관한 연구)

  • Chung, Seunghwan;Lee, Hyeongcheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.16-23
    • /
    • 2016
  • The EWB(electronic wedge brake) is one in which the braking force is developed in a wedge and caliper system and applied to a disk and wedge mechanism. The advantage of the wedge structure is that it produces self-reinforcing effect and hence, utilizes minimal motor power, resulting in reduced gear and current. The extent of use of clamping force sensors and protection from failure of the EWB system directly depends on the level of vehicle mass production. This study investigated the mathematical equations, simulation modeling, and failsafe control algorithm for the clamping force sensor of the EWB and validated the simulations. As this EWB system modeling can be applied to motor inductance, resistance, screw inertia, stiffness, and wedge mass and angle, this study could improve the accuracy of simulation of the EWB. The simulation results demonstrated the braking force, motor speed, and current of the EWB system when the driver desired to the step and pulse the brake force inputs. Moreover, this paper demonstrated that the proposed failsafe control algorithm accurately detects faults in the clamping force sensor, if any.

Wave force Acting on the Artificial Rock installed on a Submerged Breakwater in a Regular Wave field (잠제상에 설치된 표식암(의암)에 작용하는 규칙파파력의 실험적 연구)

  • 배기성;허동수
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.7-17
    • /
    • 2002
  • Recently, artificial rocks, instead of buoys, have been placed on the submerged breakwater to indicate its location. The accurate estimation of wave forces on these rocks is deemed necessary for their stability design. Characteristics of the wave force, however, are expected . to be very complicated because of the occurrence of breaking or post-breaking waves. In this regard, wave forces exerted on an artificial rock have been investigated in this paper. The maximum wave force has been found to strongly dependent on the location and shape of the artificial rock that is placed on the submerged breakwater. The plunging breaker occurs near the loading cram edge of a submerged breakwater, which cause impulsive breaking wave force on the rock. Using the Morison equation, with the velocity and acceleration at the front face of the artificial rock and varying water surface level, it is possible to estimate wave forces, even impulsive breaking wave forces, that are acting on the rock installed on a submerged breakwater. The vertical wave force is also found to depend, significantly, on the buoyant force.

Measuring methods for friction coefficient of disc-pad through running test (실차 주행시험을 통한 디스크-패드 마찰계수 측정방법)

  • Mok, Jin-Yong;Kim, Young-Guk;Kim, Seog-Won;Park, Chan-Kyoung;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.996-1001
    • /
    • 2008
  • To stop the train safely within the limited traveling distance and reduce its speed to the desired speed, it is necessary to guarantee the correct braking force. Presently, most trains have electric propulsion system and have adopted combined electrical and mechanical(friction) braking system. The friction coefficient between brake disc and pad is an important parameter in determining the mechanical braking force. In general, friction coefficient data of braking material have been taken through the dynamo-test in a laboratory. This study have suggested two methodologies that can measure friction coefficient of braking material on the train's actual operating condition. The first is the direct method; measure the brake force and the clamping force applied on the mechanical brake by using strain gauges installed at the brake disk, and then calculate it. The second method is the indirect method; obtain the friction coefficient by using the train load and the equivalent brake force which is deducted the longitudinal force, such as resistance to motion, gradient resistance and curved resistance, from the inertia force applied to the train.

  • PDF

Robust Adaptive Control Simulation of Wire-Suspended Parallel Manipulator

  • Farahani, Hossein S.;Kim, Bo-Hyun;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.46-51
    • /
    • 2004
  • This paper presents an adaptive control method based on parameter linearization for incompletely restrained wire-suspended mechanisms. The main purpose of this control method is utilizing it in a walking assist service robot for elderly people. This method is computationally simple and requires neither end-effector acceleration feedback nor inversion of estimated inertia matrix. In the proposed adaptive control law, mass, moment of inertia and external force and torque on the end-effector are considered as components of parameter adaptation vector. Nonlinear simulation for walking an elderly shows the effectiveness of the parameter adaptation law.

  • PDF

Design and Active Vibration Control of UAV EO/IR Sensor Mount Using Rubber Element and Piezoelectric Actuator (고무와 압전작동기를 이용한 무인항공기 EO/IR 센서 마운트의 설계 및 능동 진동 제어)

  • Park, Dong-Hyun;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.743-748
    • /
    • 2008
  • This paper presents an inertia type of piezostack based active mount for unmanned aero vehicle (UAV) camera system. After identifying the stiffness and damping properties of the rubber element and piezostack a mechanical model of the active mount system is established. The governing equation of mount is them derived and expressed in a state space farm. Subsequently, a sliding mode controller which is robust to uncertain parameters is designed in order to reduce the vibration imposed according to the military specification associated with UAV camera mount system operation. Control performances such as acceleration and transmitted force are evaluated through both computer simulation and experimental implementation.

  • PDF

Sliding Frictional Characteristics with the Change of Dynamic Parameters in the Friction Measurement (마찰시험기의 시스템 동적변수 변화에 따른 미끄럼마찰 특성)

  • 공호성;윤의성;권오관;오재응
    • Tribology and Lubricants
    • /
    • v.11 no.2
    • /
    • pp.44-55
    • /
    • 1995
  • Frictional characteristics with the change of dynamic parameters, such as stiffness, inertia and damping, in the friction measurement at dry sliding surfaces were experimentally and theoretically investigated throughout the study. Dynamic frictional force and the variation in the normal load were mainly measured at the various conditions of system dynamic parameters with which stiffness in the normal direction, loading mechanisms and test materials were varied. For the normal load, mechanisms using both a dead weight and a pneumatic cylinder were applied, which resulted in change of the inertia and damping of the test rig. Test materials were steel, rosin and PTFE, which have different types of intrinsic frictional characteristics. Test results showed that frictional characteristics under different dynamic parameters could be different even though the operating variables were the same and also they could result in the variation in the normal load, which could consequently affect the wear mechanism.

Parallel Running of Induction Motor by Anti-slip Controller of Inertia Conversion (관성변화시의 Anti-slip 제어기에 의한 유도전동기 병렬운전)

  • Jeon, Kee-Young;Kim, Jung-Gyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.877-878
    • /
    • 2006
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, inertia conversion the electric motor coach has slip phenomena. This paper proposes a anti-slip control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using load torque disturbance observer. Based on this estimated adhesive effort, the anti-slip control is performed to obtain the maximum transfer of the tractive effort.

  • PDF