• Title/Summary/Keyword: inelastic finite element analysis

Search Result 163, Processing Time 0.026 seconds

Inelastic vector finite element analysis of RC shells

  • Min, Chang-Shik;Gupta, Ajaya Kumar
    • Structural Engineering and Mechanics
    • /
    • v.4 no.2
    • /
    • pp.139-148
    • /
    • 1996
  • Vector algorithms and the relative importance of the four basic modules (computation of element stiffness matrices, assembly of the global stiffness matrix, solution of the system of linear simultaneous equations, and calculation of stresses and strains) of a finite element computer program for inelastic analysis of reinforced concrete shells are presented. Performance of the vector program is compared with a scalar program. For a cooling tower problem, the speedup factor from the scalar to the vector program is 34 for the element stiffness matrices calculation, 25.3 for the assembly of global stiffness matrix, 27.5 for the equation solver, and 37.8 for stresses, strains and nodal forces computations on a Gray Y-MP. The overall speedup factor is 30.9. When the equation solver alone is vectorized, which is computationally the most intensive part of a finite element program, a speedup factor of only 1.9 is achieved. When the rest of the program is also vectorized, a large additional speedup factor of 15.9 is attained. Therefore, it is very important that all the modules in a nonlinear program are vectorized to gain the full potential of the supercomputers. The vector finite element computer program for inelastic analysis of RC shells with layered elements developed in the present study enabled us to perform mesh convergence studies. The vector program can be used for studying the ultimate behavior of RC shells and used as a design tool.

Analytical study on the influence of distributed beam vertical loading on seismic response of frame structures

  • Mergos, P.E.;Kappos, A.J.
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.239-259
    • /
    • 2013
  • Typically, beams that form part of structural systems are subjected to vertical distributed loading along their length. Distributed loading affects moment and shear distribution, and consequently spread of inelasticity, along the beam length. However, the finite element models developed so far for seismic analysis of frame structures either ignore the effect of vertical distributed loading on spread of inelasticity or consider it in an approximate manner. In this paper, a beam-type finite element is developed, which is capable of considering accurately the effect of uniform distributed loading on spreading of inelastic deformations along the beam length. The proposed model consists of two gradual spread inelasticity sub-elements accounting explicitly for inelastic flexural and shear response. Following this approach, the effect of distributed loading on spreading of inelastic flexural and shear deformations is properly taken into account. The finite element is implemented in the seismic analysis of plane frame structures with beam members controlled either by flexure or shear. It is shown that to obtain accurate results the influence of distributed beam loading on spreading of inelastic deformations should be taken into account in the inelastic seismic analysis of frame structures.

Computation of Inelastic Deflection of Slab by Elastic Finite Element Analysis (탄성 유한요소 해석에 의한 슬래브의 비탄성 처짐 산정)

  • 이성우
    • Computational Structural Engineering
    • /
    • v.5 no.1
    • /
    • pp.83-89
    • /
    • 1992
  • A practical method of estimating inelastic deflection of reinforced concrete slab under service load is presented. Based on the elastic results of linear finite element analysis and area of reinforcement, inelastic deflection multiplier(.betha.) is evaluated and desired deflection as a measure of serviceability of the designed slab is obtained. Example for the corner supported slab shows that the results from the proposed method agree well with those from the experiment/and nonlinear finite element analysis. Application of the method to the design of irregular slab is also considered.

  • PDF

Seismic Performance Assessment of RC Bridge Columns using Inelastic Finite Element Analysis (비탄성 유한요소해석을 이용한 철근콘크리트 교각의 내진성능평가)

  • Kim, Tae-Hoon;Chung, Young-Soo;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.63-74
    • /
    • 2005
  • The purpose of this study is to assess the seismic performance of reinforced concrete bridge columns using inelastic finite element analysis. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Damage index aims to provide a means of quantifying numerically the damage in reinforced concrete bridge columns sustained under earthquake loading. The proposed numerical method for the seismic performance assessment of reinforced concrete bridge columns is verified by comparison with reliable experimental results.

Nonlinear Finite Element Analysis of Precast Segmental Prestressed Concrete Bridge Columns (조립식 프리스트레스트 콘크리트 교각의 비선형 유한요소해석)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Shin, Hyun-Mock
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.292-299
    • /
    • 2006
  • The purpose of this study is to investigate the inelastic behavior of precast segmental prestressed concrete bridge columns. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for the inelastic behavior of precast segmental prestressed concrete bridge columns is verified by comparison with reliable experimental results.

  • PDF

Flexural Strength of HSB Plate Girder with Compact or Noncompact Web Due to Inelastic Lateral-Torsional Buckling (조밀 또는 비조밀 복부판을 갖는 HSB 플레이트거더의 비탄성 횡비틀림좌굴에 의한 휨강도)

  • Shin, Dong Ku;Cho, Eun Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.399-409
    • /
    • 2012
  • The flexural behavior of HSB plate girder with a non-slender web, due to inelastic lateral-torsional buckling, under uniform bending was investigated by the nonlinear finite element analysis. Both homogeneous sections fabricated from SM570-TMC, HSB600 or HSB800 steel and hybrid sections with HSB800 flanges and SM570-TMC web were considered. The flanges and web of selected noncomposite I-girders were modeled as thin shell elements and the geometrical and material nonlinear finite element analysis was performed by the ABAQUS program. The steel was assumed as an elasto-plastic strain hardening material. Initial imperfections and residual stresses were taken into account and their effects on the inelastic lateral-torsional buckling behavior were analyzed. The flexural strengths of selected sections obtained by the finite element analysis were compared with the nominal flexural strengths from KHBDC LSD, AASHTO LRFD, and Eurocode and the applicability of these codes in predicting the inelastic lateral torsional buckling strength of HSB plate girders with a non-slender web was assessed.

Finite element analysis of inelastic thermal stress and damage estimation of Y-structure in liquid metal fast breeder reactor (액체금속로 Y-구조물의 비탄성 열응력 해석 및 손상평가에 관한 유한요소해석)

  • Kwak, D.Y.;Im, Y.T.;Kim, J.B.;Lee, H.Y.;Yoo, B.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1042-1049
    • /
    • 1997
  • LMFBR(Liquid Metal Fast Breeder Reactor) vessel is operated under the high temperatures of 500-550.deg. C. Thus, transient thermal loads were severe enough to cause inelastic deformation due to creep-fatigue and plasticity. For reduction of such inelastic deformations, Y-piece structure in the form of a thermal sleeve is used in LMFBR vessel under repeated start-up, service and shut-down conditions. Therefore, a systematic method for inelastic analysis is needed for design of the Y-piece structure subjected to such loading conditions. In the present investigation, finite element analysis of heat transfer and inelastic thermal stress were carried out for the Y-piece structure in LMFBR vessel under service conditions. For such analysis, ABAQUS program was employed based on the elasto-plastic and Chaboche viscoplastic constitutive equations. Based on numerical data obtained from the analysis, creep-fatigue damage estimation according to ASME Code Case N-47 was made and compared to each other. Finally, it was found out that the numerical predictio of damage level due to creep based on Chaboche unified viscoplastic constitutive equation was relatively better compared to elasto-plastic constitutive formulation.

Efficient membrane element for cyclic response of RC panels

  • Tesser, Lepoldo;Talledo, Diego A.
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.351-360
    • /
    • 2017
  • This paper presents an efficient membrane finite element for the cyclic inelastic response analysis of RC structures under complex plane stress states including shear. The model strikes a balance between accuracy and numerical efficiency to meet the challenge of shear wall simulations in earthquake engineering practice. The concrete material model at the integration points of the finite element is based on damage plasticity with two damage parameters. All reinforcing bars with the same orientation are represented by an embedded orthotropic steel layer based on uniaxial stress-strain relation, so that the dowel and bond-slip effect of the reinforcing steel are presently neglected in the interest of computational efficiency. The model is validated with significant experimental results of the cyclic response of RC panels with uniform stress states.

Analysis of Thermal Stresses During Solidification Process Using FVM/FEM Techniques (유한체적법과 유한요소법을 이용한 응고과정에서의 열응력해석)

  • 이진호;황기영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.1009-1018
    • /
    • 1994
  • An attempt is made to develop a kind of hybrid numerical method for computations of the thermal stresses during a solidification process. In this algorithm, the phase-change heat transfer analysis is perrformed by a finite volume method(FVM) and the thermal stress analysis in a solidifying body by a finite element method(FEM). The temperatures at the grid points calculated in the heat transfer analysis are transferred to those of gauss points in elements by a bi-cubic surface patch technique for the thermal stress analysis. A hyperbolic-sine constitutive law is used to prescribe the inelastic strain rate of material. Results for the unidirectional solidification process of a pure aluminum are compared with those of others and shows good agreement.

Modeling Techniques for a Thermoplastic Bumper Analysis (플라스틱 범퍼 해석에서 모델의 단순화가 결과에 주는 영향에 대하여)

  • 이경돈
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1992.03a
    • /
    • pp.115-130
    • /
    • 1992
  • The analysis of thermoplastic automotive bumpers needs not only characterizations of the thermomechanical properties of thermoplastic materials but also the finite element method which can solve the problems with a large deflection, an elastic-inelastic deformation, and a change of a contact state. This paper describes the modeling techniques in the finite element analysis in order to get a good prediction of thermoplastic bumper behaviors. Simplification effects of a complex geometry of thermoplastic bumpers are studied by comparing the results from static loading tests and the finite element analysis.

  • PDF