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Computation of Inelastic Deflection of Slab
by Elastic Finite Element Analysis
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Abstract

A practical method of estimating inelastic deflection of reinforced concrete slab under service load
is presented. Based on the elastic results of linear finite element analysis and area of reinforcement,
inelastic deflection multiplier (8) is evaluated and desired deflection as a measure of serviceability of
the designed slab is obtained. Example for the corner supported slab shows that the results from the

proposed method agree well

with those from the experiment/and nonlinear finite element analysis.

Application of the method to the design of irregular slab is also considered.

1. INTRODUCTION

Evaluation of appropriate deflections as a
measure of the serviceability of the structures
is one of the important parameters in the design
of reinforced concrete slab systems. However
the calculation of deflection in two-way reinfo-
rced concrete slab systems is not a straightfo-
rward matter. The difficulties arise due to
various boundary conditions, irregular shape of
the slab, or various loading conditions. In add-
ition to the geometric conditions, reinforced

concrete is materially nonhomogeneous and it
develops cracks. Furthermore, arrangement of
steel bars are different all over the floor, dep-
ending on its flexural characteristics.

Classical elastic plate theory provides solutions
for relatively simple boundary and loading con-
ditions(Timoshenko, 1959 and Szilard, 1974). And
approximate solutions for the regular slab can
be obtained by the equivalent frame analysis
(Kripanarayanan, 1976). However, these methods
are applicable only to the limited conditions. The
finite element method is considered to be one
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Computation of Inelastic Deflection of slab by Elastic Finite Element Analysis

of the more appropriate approach for this pro-
blem, since the accurate solutions can be obta-
ined for the slab of any shape or boundary
conditions. But the elastic deflections are not
acceptable for use in the serviceability check
of the designed slab, since they do not consider
the effects of concrete cracking and reinforce-
ment on the member stiffness as stipulated in
the ACI 318 code(ACI, 1989). These complicated
characteristics can be incoporated by using the
nonlinear finite element method. However, the
application of the method to the practical slab
design problem is not viable, due to the comp-
lexity of modeling and expensive solution cost.
Moreover, proper modeling for reinforcement
prior to nonlinear analysis is another problem
in the design process, since the steel areas can
not be determined until the analysis is comple-
ted. Hence a practical method for use in slab
design to evaluate service load deflection com-
bined with linear finite element method is
necessary.

2. ELASTIC MOMENTS OF THE SLAB

The moment values(M,, M,) of the slab
required for succeeding calculations are obtained
from the finite element analysis of the slab.
In this analysis isoparametric plate bending
element is used. For the element shown in the
Fig.1, simple expression of the x and y direction
moments can be given as(Lee, 1987).

(61) - (wi ’xi ﬂyi 0= -1

Figure 1. Isoparametric plate bending element
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where
D  =flexural ngidity of slab
=FEr/12(1—»*) in which ‘E is Young’s
modulus, ‘¢" 1s thickness of the slab,
and %’ is Potsson’s ratio
N= number of nodes of an element

Oui =0, rotation ot node i
B =8, rotation ot node i
In the above expression a; and 8; are given
as
@ 8X DY) | Bw
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where
§&n=~£7 coordinate of isoparametric element
W¥i=shape function at node i

In addition to the moment values in both
directions, the areas of the steel are also nece-
ssary to compute transformed steel area of the
reinforced slab. In the analysis problem, they
should be provided prior to the analysis. How-
ever, in the design problem, the steel areas must
be calculated using the design governing mom-
ents of the elastic solution and the final designed
values are obtained by comparing the minimum

code requirement.

3. INELASTIC DEFLECTION MULTIPLIER(S)
METHOD

In the elastic theory, deflection of the isotropic
beam can be expressed as

—p 9t 3
w=k o
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where

w =deflection in the direction of loading

k =factor depending on loading pattern and
boundary condition

g =uniformly distributed load

¢ =span length

I =moment of inertia of the beamn section

The above expression assumes pure elastic
condition, but it should be modified if the eff-
ects of concrete cracking are to be considered.
Branson(1965) developed the effective moment
of inertia approach in the beam deflection and
ACI code adopted this method since 1971. In
this method, the gross moment of inertia, I, is
reduced to an effective moment of inertia, I,,
taking into account the cracked transformed
section of the beam. Then inelastic deflection,

A, can be expressed as
—x 3L @
A=k EL

Dividing Eq. (4) by Eq. (3), the ratio, 4,
which is referred to as inelastic deflection
multiplier is obtained.

L= )

2 =1.0
w

«h]\

Note that in Eq (5), Young’s modulus E is
assumed to be the same before and after cra-
cking. Rewriting Eq. (5) in terms of A

A=Rw (6)

Thus final deflection A is obtained simply
multiplying £ to the elastic deflection w. If one
considers unit width of the slab in each direc-
tion, similar relationships can be obtained for
the two-way slab. The 8 value of the slab in
x direction similar to Eq. (5) can be expressed
as

)

L=

ex

where 1., is effective moment of inertia about
y axis considering unit width of the slab in y
direction, and it can be expressed as

Iex=(Mrr/M.r)3lg+u _(Mcr/Mx)al Icr.x—g—lg (8)

where

M("
I

=/f.I/y,=cracking moment

=modulus of rupture of concrete

=0.65 /W, where W, is the unit
weight of concrete and f7 is strength
of the concrete

=distance from extreme tension fiber
to neutral axis of gross uncracked
section

M, =aplied moment per unit width in x
direction at the location under which
deflection is computed. It is given in
Eq. Q).

I =moment of inertia of gross uncracked
section of unit width, neglecting rei-
nforcement.

I, =moment of inertia of transformed
cracked section considering unit width
of siab in y direction
Similar expression for 8, can be obtained in

y direction, By averaging 8, and 8,, the final

B value of the slab at the desired location is

-then obtained.
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To compute service load deflections, 8 values
are necessary for the loading condition of unf-
actored loads. However, they can be evaluated
only when steel areas are known, since moment
of inertia of transformed cracked section involve
steel areas. In the analysis problem, the steel
areas are given prior to the analysis, hence A
values are computed whenever analysis of cer-
tain load case is done and resulting moments
for that load case are available. But in the
design problem, the steel areas are determined
at the last stage of analysis, namely after
obtaining governing design moments from the



Computation of Inelastic Deflection of slab by Elastic Finite Element Analysis

analysis of several different cases of factored
loading conditions. Thus 8 values for service
load condition can be estimated only when all
the strength design process is completed.

Once /A values are obtained, service load
deflections can be evaluated multiplying the
elastic deflections by the corresponding £ values
at the desired nodal points. Actually, in the
design problem, only the maximum deflection
needs to be checked for serviceability criterion.

4. COMPARISON WITH EXPERIMENT AND
NONLINEAR ANALYSIS

To see how the B-method provides reasonable
solutions, an analysis problem is considered.
Corner supported slab under a central point load
tested by McNeice(1971) is shown in Fig.2. Due
to the symmetry conditions one quarter model
is considered. A total of 36, 8-node elements
are used and it is shown is the Fig.2 at upper
right sector. Since the meshes are rectangular
and thickness to width ratio is small(1/21),
reduced integration rule (2x2 points in Gauss
quadrature) is applied to the element stiffness
formulation of bending and shear term.

A values for each load case are computed
using pre-assigned steel areas and moment
results of corresponding load case. The contour
plot of B values for load p=3.2 kips is shown
in Fig.3, and these values are used to evaluate
deflections in the load-deflection curves. As
shown in the Fig.3, # has its greatest value
(around 5) at center of the slab upon which
concentrated load i1s applied. Which means that
at the center of the slab, inelastic deflection
considering the effects of concrete cracking and
steel areas is about 5 times greater than the
elastic deflection. Inelastic deflections at other
places can be estimated in the similar manner.
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The contour plots for different loads are also
obtained and it was observed that contour line
of high 4 value moves toward the corner as
load increases. This indicates that inelastic region
is expanded with higher loads.

Comparison of load-deflection curves at node
21 and 61(see Fig.2) are shown in Figs4 to 5
. If service load is assumed as twice the slab
weight(0.38 kips), the deflections computed from
B-method shows a good agreement with those
obtained from experiment and nonlinear finite
element analysis up to 5 to 6 times the service
load level. Beyond this load level, solutions at
the central part of the slab, which represent
maximum deflections, are still good all the way
up to failure(Fig.4), whereas the solutions are
getting stiffer when the locations are away from
the center of the slab(Fig.5). In this example,
many load cases are analyzed to obtain corres-
ponding points in the load-deflection curves, but
it is not necessary to do this if one disires a
solution at certain load level. The analysis is
required only once for this load level and corr-
esponding A value is computed. Then desired
inelastic deflection is obtained directly from the
elastic deflection. This is a big difference bet-
ween the S-method and nonlinear finite element
method in which all the previous solutions must
be obtained to get the solutions at certain load
level. Thus the latter requires much more com-
putational efforts and makes the approach almost
impractical for design application.

In view of this example and other examples
(Lee, 1987), it is concluded that the method
combined with linear finite element analysis
provides a very good solution at the service load
level, and it produces a good approximation up
to 5 to 6 times service load level. Thus the
method is considered to be a very practical tool
for evaluating the service load deflection in the
reinforced concrete two-way slabs, taking into
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Figure 4. Load-deflection curves at node 21.

account the effects of cracking and reinforce-
ment. Application of the B-method to the design
problem is a little different from that to the
analysis problem. As mentioned earlier, in design
problem, the steel areas must be estimated first
to proceed the method.

To show how the method is applied to pra-
ctical disign problems, a concrete slab of irreg-
ular shape is considered. The plan and a quarter
model of finite element mesh is shown in Fig.

Figure 5. Load-deflection curves at nude 61.

6. As shown in the Fig.6, the circular slab has
rectangular opening at its central part. Due to
the complexity of geomertry, other means of
analysis except finite element method is almost
impossible. After analyzing the structure for the
several combinations of load cases, elastic def-
lections and the moments in radius and circular
directions are obtained. In Fig.7, deformed shape
of a quarter model under the service load con-

dition is shown.
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Story height = 9 ft
Thickness of slab = 7 in
All columns = 20 x 20 in

All beams = 15 x 25 in
t"c= 4 ksi for slab, beam, and colum
£ "= 60 ksi
Sdperimposed dead load ~ 40 psf
Live load = 100 psf
Figure 6. Plan and quarter model of circular slab with

opening.

Using the disign governing moments taken
from computed values of all load cases, the
required steel areas for the desired locations are
computed. Then those values are compared with
ACI code minimum steel area to determine final
designed steel areas.

Once the steel areas are determined, the 2
values can be computed according to the proc-
edure described above. Based on these values,
the contour plots of B for the service load
conditions are obtained. To compare the max-
imum ACI code limit on live load deflections
as serviceability check, the A values for unfa-
ctored dead load and unfactored dead load plus
live load should be determined. The former is
shown in Fig.8.

From the Fig.7, it is observed that the
maximum deflection occurs at mid span(point
‘a’ in Fig.6). Therefore, the maximum inelastic

Figure 7. Deformed shape of circular slab.
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Figure 8. 3 contour for the circular slab.

service load deflection can easily be obtained
by multiplying A8 at this location to the elastic
deflection. The maximumn service load deflection
together with the ACI code limit are shown in
the Table 1. In this example, all the strength
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Table 1. Maximum service load deflection (in.) at ‘a" in

Figs.
et DLW DLALL  LL o limt
Go)  (botuw)  (Bu) (L/360)
Elastic 0.1092 0.1836
Multiplier 9.16 11.16
Inelastic 1.00 205 1.05 087

criteria for the moment and the shear are sat-
isfied. However, the designed slab violates the
serviceability criteria as shown in the Table.l
Therefore due consideration must be given and
redesign should be performed. Possible adjustm-
ent may be either increase slab thickness or
provide circular beam at mid-span to reduce the
deflection.

5. CONCLUSIONS

A practical means of estimating service load
deflection of the concrete slab is presented. The
mothod is considered to be very useful tool in
measuring serviceability of the slab. From the
observations and discussions presented in the
paper, the following conclusions can be drawn:

1. Inelastic deflection multiplier (8) is evalu-
ated utilizing the elastic results from the linear
finite element analysis in which isoparametric
plate bending element is used.

2. In computing £ value, the effect of rein-
forcement and cracking of concrete is duly
oonsidered by introducing the effective moment
of inertia approach to the slab. Hence approp-
riate inelestic deflections are obtained by mul-
tiplying 8 to the elastic deflections.

3. The comparison with the results from
experiment and nonlinear finite element analysis
for the corner supported slab shows that the
B-mothod provides a realistic solution at the
service load level without involving any nonlinear

process.

4. The method is believed to be particularly
suitable for the design application, since the steel
areas are disigned in advance through the str-
ength design process by elastic analysis, then
using the service load deflection the serviceability
is duly checked for the designed slab.
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