• 제목/요약/키워드: inelastic displacement response

검색결과 111건 처리시간 0.021초

완만한 이력거동 시스템에 대한 비탄성 변위비의 평가 (Evaluation of Inelastic Displacement Ratios for Smooth Hysteretic Behavior Systems)

  • 송종걸
    • 한국지진공학회논문집
    • /
    • 제15권3호
    • /
    • pp.11-26
    • /
    • 2011
  • 비탄성 변위비는 최대 선형 탄성변위에 대한 최대 비탄성 변위의 비로서 정의된다. 비탄성 변위비는 비탄성 응답의 계산을 하지 않고도 최대 탄성변위로부터 최대 비탄성변위를 직접적으로 평가 가능하게 한다. 비탄성 변위비에 대한 기존의 연구는 이선형 또는 강성저하시스템과 같은 분할선형시스템에 국한되었다. 본 논문에서는 근거리 및 원거리 지진을 받는 완만한 곡선형 이력거동 시스템의 비탄성 변위비에 대하여 연구하였다. 두 단계의 회귀분석 과정을 통하여 비탄성 변위비에 대한 간편식을 제안하였다.

지진의 특성주기를 고려한 완만한 곡선형 이력거동시스템의 비탄성 변위비 (Inelastic Displacement Ratios for Smooth Hysteretic System Considering Characteristic Period of Earthquakes)

  • 송종걸
    • 한국지진공학회논문집
    • /
    • 제17권1호
    • /
    • pp.1-10
    • /
    • 2013
  • In order to predict inelastic displacement response without nonlinear dynamic analysis, the equal displacement rule can be used for the structures with longer natural periods than the characteristic period, $T_g$, of earthquake record. In the period range longer than $T_g$, peak displacement responses of elastic systems are equal or larger than those of inelastic systems. In the period range shorter than $T_g$, opposite trend occurs. In the equal displacement rule, it is assumed that peak displacement of inelastic system with longer natural period than $T_g$ equals to that of elastic system with same natural period. The equal displacement rule is very useful for seismic design purpose of structures with longer natural period than $T_g$. In the period range shorter than $T_g$, the peak displacement of inelastic system can be simply evaluated from the peak displacement of elastic system by using the inelastic displacement ratio, which is defined as the ratio of the peak inelastic displacement to the peak elastic displacement. Smooth hysteretic behavior is more similar to actual response of real structural system than a piece-wise linear hysteretic behavior such as bilinear or stiffness degrading behaviors. In this paper, the inelastic displacement ratios of the smooth hysteretic behavior system are evaluated for far-fault and near-fault earthquakes. The simple formula of inelastic displacement ratio considering the effect of $T_g$ is proposed.

Energy based procedure to obtain target displacement of reinforced concrete structures

  • Massumi, A.;Monavari, B.
    • Structural Engineering and Mechanics
    • /
    • 제48권5호
    • /
    • pp.681-695
    • /
    • 2013
  • Performance-based seismic design allows a structure to develop inelastic response during earthquakes. This modern seismic design requires more clearly defined levels of inelastic response. The ultimate deformation of a structure without total collapse (target displacement) is used to obtain the inelastic deformation capacity (inelastic performance). The inelastic performance of a structure indicates its performance under excitation. In this study, a new energy-based method to obtain the target displacement for reinforced concrete frames under cyclic loading is proposed. Concrete structures were analyzed using nonlinear static (pushover) analysis and cyclic loading. Failure of structures under cyclic loading was controlled and the new method was tested to obtain target displacement. In this method, the capacity energy absorption of the structures for both pushover and cyclic analyses were considered to be equal. The results were compared with FEMA-356, which confirmed the accuracy of the proposed method.

Ductility-based seismic design of precast concrete large panel buildings

  • Astarlioglu, Serdar;Memari, Ali M.;Scanlon, Andrew
    • Structural Engineering and Mechanics
    • /
    • 제10권4호
    • /
    • pp.405-426
    • /
    • 2000
  • Two approximate methods based on mechanism analysis suitable for seismic assessment/design of structural concrete are reviewed. The methods involve use of equal energy concept or equal displacement concept along with appropriate patterns of inelastic deformations to relate structure's maximum lateral displacement to member and plastic deformations. One of these methods (Clough's method), defined here as a ductility-based approach, is examined in detail and a modification for its improvement is suggested. The modification is based on estimation of maximum inelastic displacement using inelastic design response spectra (IDRS) as an alternative to using equal energy concept. The IDRS for demand displacement ductilities are developed for a single degree of freedom model subjected to several accelerograms as functions of response modification factor (R), damping ratios, and strain hardening. The suggested revised methodology involves estimation of R as the ratio of elastic strength demand to code level demand, and determination of design base shear using $R_{design}{\leq}R$ and maximum displacement, determination of plastic displacement using IDRS and subsequent local plastic deformations. The methodology is demonstrated for the case of a 10-story precast wall panel building.

Seismic response control of elastic and inelastic structures by using passive and semi-active tuned mass dampers

  • Woo, Sung-Sik;Lee, Sang-Hyun;Chung, Lan
    • Smart Structures and Systems
    • /
    • 제8권3호
    • /
    • pp.239-252
    • /
    • 2011
  • In this study, the performances of a passive tuned mass damper (TMD) and a semi-active TMD (STMD) were evaluated in terms of seismic response control of elastic and inelastic structures under seismic loads. First, elastic displacement spectra were obtained for damped structures with a passive TMD and with a STMD proposed in this study. The displacement spectra confirmed that the STMD provided much better control performance than passive TMD and the STMD had less stroke requirement. Also, the robustness of the TMD was evaluated by off-tuning the frequency of the TMD to that of the structure. Finally, numerical analyses were conducted for an inelastic structure of hysteresis described by the Bouc-Wen model. The results indicated that the performance of the passive TMD whose design parameters were optimized for an elastic structure considerably deteriorated when the hysteretic portion of the structural responses increased, and that the STMD showed about 15-40% more response reduction than the TMD.

지진하중에 대한 다경간 교량의 비탄성 변위응답 평가 (Evaluation of Inelastic Displacement Response for Multi-Span Bridge Structures Subjected to Earthquakes)

  • 송종걸;남왕현;정영화
    • 산업기술연구
    • /
    • 제24권A호
    • /
    • pp.195-204
    • /
    • 2004
  • To evaluate inelastic seismic responses of multi-span bridge structures, the capacity spectrum method(CSM) incorporating the equivalent single-degree-of freedom(ESDOF) method is presented. Application of the CSM incorporating the ESDOF method is illustrated by example analysis for symmetric and asymmetric bridge structures. To investigate an accuracy of the CSM, the maximum displacements estimated by the CSM are compared to those by inelastic time history analysis for several artificial earthquakes. The results show that the CSM provided conservative estimates of the maximum displacements for the symmetric and asymmetric bridge structures, and the trend of conservative estimates of the asymmetric bridge structures was significantly larger than that of the symmetric bridge structure.

  • PDF

Inelastic displacement-based design approach of R/C building structures in seismic regions

  • Rubinstein, Marcelo;Moller, Oscar;Giuliano, Alejandro
    • Structural Engineering and Mechanics
    • /
    • 제12권6호
    • /
    • pp.573-594
    • /
    • 2001
  • A two-level displacement-based design procedure is developed. To obtain the displacement demands, elastic spectra for occasional earthquakes and inelastic spectra for rare earthquakes are used. Minimum global stiffness and strength to be supplied to the structure are based on specified maximum permissible drift limits and on the condition that the structure responds within the elastic range for occasional earthquakes. The performance of the structure may be assessed by an inelastic push-over analysis to the required displacement and the evaluation of damage indices. The approach is applied to the design of a five-story reinforced concrete coupled wall structure located in the most hazardous seismic region of Argentina. The inelastic dynamic response of the structure subjected to real and artificially generated acceleration time histories is also analyzed. Finally, advantages and limitations of the proposed procedure from the conceptual point of view and practical application are discussed.

비탄성 응답스펙트럼에 대한 완만한 곡선형 이력거동의 영향 (Effect of Smooth Hysteretic Behavior for Inelastic Response Spectra)

  • 송종걸
    • 한국지진공학회논문집
    • /
    • 제14권1호
    • /
    • pp.1-9
    • /
    • 2010
  • 실제 구조요소나 구조시스템의 비선형응답은 단순화된 형태의 분할선형 이력모델 보다는 완만한 곡선이력모델로 나타내는 것이 보다 정확하다. 본 논문에서는 완만한 곡선이력거동을 적용한 일정연성도 비탄성 응답스펙트럼을 작성하는 방법을 제시하였다. 가속도, 변위 및 입력에너지에 대한 비탄성 응답스펙트럼에 대한 곡선형이력거동의 완만한 정도의 영향을 평가하였다. 해석결과로부터 곡선형이력거동의 완만도가 증가할수록 비탄성 응답스펙트럼은 감소하는 경향을 나타냄을 알 수 있었다.

Performance-Based Seismic Design of Reinforced Concrete Building Structures Using Inelastic Displacements Criteria

  • Kabeyaswa, Toshimi
    • 한국지진공학회논문집
    • /
    • 제2권3호
    • /
    • pp.61-71
    • /
    • 1998
  • A performance-based seismic design method for reinforced concrete building structures being developed in Japan is outlined. Technical and scientific background of the performance-based design philosophy as well as recently developed seismic design guidelines are is presented, in which maximum displacement response to design earthquake motion is used as the limit-state design criteria. A method of estimating dynamic response displacement of the structures based on static nonlinear analysis is described. A theoretical estimation of nonlinear dynamic response considering the characteristics of energy input to the system is described in detail, which may be used as the standard method in the new performance-based code. A desing philosophy not only satisfying the criteria but also evaluating seismic capacity of the structures is also introduced.

  • PDF

Probability-based prediction of residual displacement for SDOF using nonlinear static analysis

  • Feng, Zhibin;Gong, Jinxin
    • Earthquakes and Structures
    • /
    • 제22권6호
    • /
    • pp.571-584
    • /
    • 2022
  • The residual displacement ratio (RDRs) response spectra have been generally used as an important means to evaluate the post-earthquake repairability, and the ratios of residual to maximum inelastic displacement are considered to be more appropriate for development of the spectra. This methodology, however, assumes that the expected residual displacement can be computed as the product of the RDRs and maximum inelastic displacement, without considering the correlation between these two variables, which inevitably introduces potential systematic error. For providing an adequately accurate estimate of residual displacement, while accounting for the collapse resistance performance prior to the repairability evaluation, a probability-based procedure to estimate the residual displacement demands using the nonlinear static analysis (NSA) is developed for single-degree-of-freedom (SDOF) systems. To this end, the energy-based equivalent damping ratio used for NSA is revised to obtain the maximum displacement coincident with the nonlinear time history analysis (NTHA) results in the mean sense. Then, the possible systematic error resulted from RDRs spectra methodology is examined based on the NTHA results of SDOF systems. Finally, the statistical relation between the residual displacement and the NSA-based maximum displacement is established. The results indicate that the energy-based equivalent damping ratio will underestimate the damping for short period ranges, and overestimate the damping for longer period ranges. The RDRs spectra methodology generally leads to the results being non-conservative, depending on post-yield stiffness. The proposed approach emphasizes that the repairability evaluation should be based on the premise of no collapse, which matches with the current performance-based seismic assessment procedure.