• Title/Summary/Keyword: industrial wastes

Search Result 460, Processing Time 0.031 seconds

CO2 Sequestration and Utilization of Calcium-extracted Slag Using Air-cooled Blast Furnace Slag and Convert Slag (괴재 및 전로슬래그를 이용한 CO2 저감 및 칼슘 추출 후 슬래그 활용)

  • Yoo, Yeongsuk;Choi, Hongbeom;Bang, Jun-Hwan;Chae, Soochun;Kim, Ji-Whan;Kim, Jin-Man;Lee, Seung-Woo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.101-111
    • /
    • 2017
  • Mineral carbonation is a technology in which carbonates are synthesized from minerals including serpentine and olivine, and industrial wastes such as slag and cement, of which all contain calcium or magnesium when reacted with carbon dioxide. This study aims to develop the mineral carbonation technology for commercialization, which can reduce environmental burden and process cost through the reduction of carbon dioxide using steel slag and the slag reuse after calcium extraction. Calcium extraction was conducted using NH4Cl solution for air-cooled slag and convert slag, and ${\geq}98%$ purity calcium carbonate was synthesized by reaction with calcium-extracted solution and carbon dioxide. And we conducted experimentally to minimize the quantity of by-product, the slag residue after calcium extraction, which has occupied large amount of weight ratio (about 80-90%) at the point of mineral carbonation process using slag. The slag residue was used to replace silica sand in the manufacture of cement panel, and physical properties including compressive strength and flexible strength of panel using the slag residue and normal cement panel, respectively, were analyzed. The calcium concentration in extraction solution was analyzed by inductively coupled plasma optical emission spectrometer (ICP-OES). Field-emission scanning electron microscope (FE-SEM) was also used to identify the surface morphology of calcium carbonate, and XRD was used to analyze the crystallinity and the quantitative analysis of calcium carbonate. In addition, the cement panel evaluation was carried out according to KS L ISO 679, and the compressive strength and flexural strength of the panels were measured.

Performance Characteristics of Agitated Bed Manure Composting and Ammonia Removal from Composting Using Sawdust Biofiltration System (교반식 축분 퇴비화 및 톱밥 탈취처리 시스템의 퇴비화 암모니아 제거 성능)

  • Hong, J.H.;Park, K.J.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.1
    • /
    • pp.13-20
    • /
    • 2007
  • Sawdust biofiltration is an emerging bio-technology for control of ammonia emissions including compost odors from composting of biological wastes. Although sawdust is widely used as a medium for bulking agent in composting system and for microbial attachment in biofiltration systems, the performance of agitated bed composting and sawdust biofiltration are not well established. A pilot-scale composting of hog manure amended with sawdust and sawdust biofiltration systems for practical operation were investigated using aerated and agitated rectangular reactor with compost turner and sawdust biofilter operated under controlled conditions, each with a working capacity of approximately $40m^3\;and\;4.5m^3$ respectively. These were used to investigate the effect of compost temperature, seed germination rate and the C/N ratio of the compost on ammonia emissions, compost maturity and sawdust biofiltration performance. Temperature profiles showed that the material in three runs had been reached to temperature of 55 to $65^{\circ}C$ and above. The ammonia concentration in the exhaust gas of the sawdust biofilter media was below the maximum average value as 45 ppm. Seed germination rate levels of final compost was maintained from 70 to 93% and EC values of the finished compost varied between 2.8 and 4.8 ds/m, providing adequate conditions for plant growth.

  • PDF

Mushroom Production Technology with Crop Residues (농산부산물(農産副産物)을 이용(利用)한 식용(食用)버섯 재배(栽培))

  • Cha, Dong-Yeul;Park, Jeong-Sik
    • Applied Biological Chemistry
    • /
    • v.27
    • /
    • pp.47-55
    • /
    • 1984
  • The results of series studies on the ratio of supplements, out-door composting and out-door fermentation induced by using the rice straw as a main substrates at the cultivation of Agaricus bisporus, and the cultivation of Pleurotus ostreatus using the rice straw bundles on its compost are as follows; When rice straw for cultivation of A. bisporus was used as the main substrates in synthetic compost as a carbon source, yields were remarkably high. Fermentation was more rapid than that of barley straw or wheat straw and the total nitrogen content was high in rice straw compost. Use of barley straw compost for cultivation of A. bisporus was shown of low yield compared with rice straw, but when a 50% barley straw and 50% rice straw mixture was used, the yield was almost the same as that using only rice straw. The total organic nitrogen on the compost were shown the positive relation to the yield of A. bisporus, but the ammonium nitrogen negative relation to the mycelial growth and yield of A. bisporus. When rice straw was used as the main substrate for compost media, urea was the most suitable source of nitrogen. Poor results were obtained with calcium cyanamide and ammonium sulfate. When urea was applied three separate times, nitrogen loss during composting was decreased and the total nitrogen content of compost was increased. The supplementation of organic nutrient activated compost fermentation and increased yield of A. bisporus. The best sources of organic nutrients selected were as follows: perilla meal, sesame meal, wheat bran and poultry manure, etc. Soybean meal, tobacco powder and glutamic acid fermentation byproducts which were industrial wastes, could be substituted for perilla meal, sesame meal and wheat bran as organic nutrient sources for compost media. During out door composing of rice straw for cultivation of A. bisporus, using of tuner, composter and tunnel system increased up to 13% of its yield, and also cut down 34% of production Cost. The cultivation of P. ostreatus and utilizing of rice straw and wheat straw was established and its yield was high on the rice straw pots. When the substrates 'Rice straw' was heated by steam at $60^{\circ}C$ for 6 hr. mycelial growth of P. ostreatus was moderately rapid and its yield was high.

  • PDF

Investigation on Natural Radioactivity of Environmental Samples Near the Phosphate Rock Processing Facility (인광석 사용업체 주변 환경시료의 자연방사능 조사)

  • Lee, Gill-Jae;Koh, Sang-Mo;Chang, Byung-Uck;Kim, Tong-Kwon;Kim, Young-Ug
    • Economic and Environmental Geology
    • /
    • v.44 no.1
    • /
    • pp.37-48
    • /
    • 2011
  • Some industrial minerals used in domestic industries such as monazite, apatite, bauxite, and ilmenite belong to NORM (Naturally Occurring Radioactive Materials) because they show a high radioactivity. Products, semi-products, wastes, and by-products which show higher radioactivity than NORM belong to TENORM (Technologically Enhanced Naturally Occurring Radioactive Materials). Apatite used for manufacturing phosphate fertilizer in Namhae Chemical company belongs to NORM, and its by-product, phospo-gypsum, belongs to TENORM. A geological investigation is needed for the future environmental impact assessment of the Namhae Chemical company's site. According to survey results of the Namhae Chemical company's site, soil mineral composition indicated the mixture of minerals derived from the country rock (quartz, feldspar, mica, $l4{\AA}$ mineral, kaolin and amphibole) and minerals from the gypsum open-air storage yard (gypsum and apatite). Soil samples showed average content of U 4.6 ppm and Th 10 ppm, which are similar to average crustal abundances. They also show average contents of $^{40}K$ 191-1,166 Bq/kg, $^{226}Ra$ 15.6-710 Bq/kg, and $^{232}Th$ 17.4-72.7 Bq/kg, which indicate moderate levels of radio nuclide. But $^{226}Ra$ anomaly in the gypsum open storage yard is clearly confirmed and $^{232}Th$ anomaly is also confirmed in the east road side of the factory and nearby mountain areas. Soil external hazard indices ranged 0.24-2.01 with the average 0.54. Although most external hazard indices were lower than 1, which means radiation hazard index to be negligible, 5 samples out of total 40 samples showed higher values than 1, and further detailed investigation is needed.

Effects of Farming on Soil Contamination and Water Quality in Keum River Districts (금강유역 농업지대의 토양 및 수질오염)

  • Han, Kang-Wan;Cho, Jae-Young;Kim, Seong-Jo
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.1
    • /
    • pp.19-24
    • /
    • 1997
  • This studies was carried out to investigate the soil contamination and water quality affected by agricultural activities in the Keum river Districts. Soil pH of the Keum river districts were $5.56{\sim}7.09$ in Keum river headwater and Namdae-cheon but that of Keumgang-lake were $5.07{\sim}7.21$ because of the cattle shed and industrial complex around. Total nitrogen contents of soils were found difference as period of fertilizer application. Total phosphorous content of soils no difference were found between the headwater and Keumgang-lake. Heavy metal contents of soils were natural background level. Water pH of the Keum river districts ranged from 6.59 to 7.80 and COD was maintain below 1.0 mg/L. Total nitrogen content affected by a livestock wastes and sewage water were the higher than that of others and total phosphorous content showed below 0.5 mg/L. Nitrate nitrogen and ortho-phosphate contents were very high according to the influence a livestock waste and sewage water in headwater region of the Keum river partly. Chlorine and sulfate contents were high according to the influence of sea water invasion. Heavy metal contents of waters were natural background level.

  • PDF

Verification and Estimation of the Contributed Concentration of CH4 Emissions Using the WRF-CMAQ Model in Korea (WRF-CMAQ 모델을 이용한 한반도 CH4 배출의 기여농도 추정 및 검증)

  • Moon, Yun-Seob;Lim, Yun-Kyu;Hong, Sungwook;Chang, Eunmi
    • Journal of the Korean earth science society
    • /
    • v.34 no.3
    • /
    • pp.209-223
    • /
    • 2013
  • The purpose of this study was to estimate the contributed concentration of each emission source to $CH_4$ by verifying the simulated concentration of $CH_4$ in the Korean peninsula, and then to compare the $CH_4$ emission used to the $CH_4$ simulation with that of a box model. We simulated the Weather Research Forecasting-Community Multiscale Air Quality (WRF-CMAQ) model to estimate the mean concentration of $CH_4$ during the period of April 1 to 22 August 2010 in the Korean peninsula. The $CH_4$ emissions within the model were adopted by the anthropogenic emission inventory of both the EDGAR of the global emissions and the GHG-CAPSS of the green house gases in Korea, and by the global biogenic emission inventory of the MEGAN. These $CH_4$ emission data were validated by comparing the $CH_4$ modeling data with the concentration data measured at two different location, Ulnungdo and Anmyeondo in Korea. The contributed concentration of $CH_4$ estimated from the domestic emission sources in verification of the $CH_4$ modeling at Ulnungdo was represented in about 20%, which originated from $CH_4$ sources such as stock farm products (8%), energy contribution and industrial processes (6%), wastes (5%), and biogenesis and landuse (1%) in the Korean peninsula. In addition, one that transported from China was about 9%, and the background concentration of $CH_4$ was shown in about 70%. Furthermore, the $CH_4$ emission estimated from a box model was similar to that of the WRF-CMAQ model.

A Preliminary Analysis on the International Management System for the Ocean fertilization with Iron at High Seas (해양 철분 시비(施肥)사업의 국제 관리체제 예비 분석)

  • Hong, Gi-Hoon;Sohn, Hyo-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.138-149
    • /
    • 2008
  • Rapid accumulation of carbon dioxide in the atmosphere for the past century leads to acidify the surface ocean and contributes to the global warming as it forms acid in the ocean and it is a green house gas. In order to curb the green house gas emissions, in particular carbon dioxide, various multilateral agreements and programs have been established including UN Convention of Climate Change and its Kyoto Protocol for the last decades. Also a number of geo-engineering projects to manipulate the radiation balance of the earth have been proposed both from the science and industrial community worldwide. One of them is ocean fertilization to sequester carbon dioxide from the atmosphere through the photosynthesis of phytoplankton in the sea. Deliberate fertilization of the ocean with iron or nitrogen to large areas of the ocean has been proposed by commercial sector recently. Unfortunately the environmental consequences of the large scale ocean iron fertilization are not known and the current scientific information is still not sufcient to predict. In 2007, the joint meeting of parties of the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter, 1972 and 1996 Protocol (London Convention/Protocol) has started considering the purposes and circumstances of proposed large-scale ocean iron fertilization operations and examined whether these activities are compatible with the aims of the Convention and Protocol and explore the need, and the potential mechanisms for regulation of such operations. The aim of this paper is to review the current development on the commercial ocean fertilization activities and management regimes in the potential ocean fertilization activities in the territorial sea, exclusive economic zone, and high seas, respectively, and further to have a view on the emerging international management regime to be London Convention/Protocol in conjunction with a support from the United Nations General Assembly through The United Nations Open-ended Informal Consultative Process on Oceans and the Law of the Sea.

  • PDF

Heavy Metals of Landfilled Biomass and Their Environmental Standard, Including CCA-treated Wood for Eco-housing Materials (방부처리 목재를 포함한 토양매립 바이오메스의 중금속 함량과 안전성 문제)

  • Lim, Kie-Pyo;Lee, Jong-Tak;Bum, Jung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.37-45
    • /
    • 2006
  • Recently, wood-framed houses has been built in the Korea for pension. Wood is good material for human healthy, while the construction lumbers are treated with preservative such as CCA (chromated copper arsenate), which contain some toxic elements for human body. However, if the waste woody biomass treated with various heavy metals, which has been collected from house construction or demolition, was fired in the field, and incinerated or landfilled after mass collection, such components will result in the toxic air pollutants in the burning or land fills, and spreaded into other areas. So the careful selection of wood and chemicals are required in advance for house construction, in particular, for environment-friendly housings. Therefore, this study was carried out to determine the content of toxic heavy metals in woody materials such as domestic hinoki and imported hemlock treated with CCA for housing materials, and the post-treated wood components such as organic fertilizer, sludge, dry-distilled charcoal and carbonized charcoal, to be returned finally into soil. The results are as follows. 1) The chemical analysis of toxic trace elements in various solid biomass required accurate control and management of laboratory environment, and reagents and water used, because of the error of data due to various foreign substances added in various processing and transporting steps. So a systematic analyzers was necessary to monitor the toxic pollutants of construction materials. 2) In particular, the biomass treated with industrial biological or thermal conditions such as sludge or charcoals was not fully dissolvable after third addition of $HNO_3$ and HF. 3) The natural woody materials such as organic fertilizer, sludge. and charcoals without any treatment of preservatives or heavy metal components were nontoxic in landfill because of the standard of organic fertilizers, even after thermal or biological treatments. 4) The CC A-treated wood for making the construction wood durable should not be landfilled, because of its higher contents of toxic metals than the criterion of organic fertilizer for agriculture or of natural environment. So the demolished waste should be treated separately from municipal wastes.

Studies on Engneering Properties of Coal Ash Obtained as Industrial Wastes (산업폐기물(産業廢棄物)로 발생(發生)되는 석탄회(石炭灰)의 토질력학적(土質力學的) 특성(特性)에 관한 연구(硏究))

  • Chun, Byung Sik;Koh, Yong Il;Oh, Min Yeoul;Kwon, Hyung Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.115-123
    • /
    • 1990
  • The purpose of this study was to examine the uses of coal ash as a type of construction material. The methods of examination were chemical anlysis, soil laboratory test and the soil vibration test. Materials used were coal ash obtained as a by-product from 5 thermal power plants in Yongdong, Yongwol, Sochon(anthracite coal) and in Samchonpo and Honam (bituminous coal). Over 70% of the coal ash consisted of silica and alumina. The fly ash grain size showed a uniform distribution from fine-sand to silt, and that of the bottom ash showed from sand to gravel. The specific gravity and density of the coal ash were low. The long term strength increased gradually due to the self-setting property resulting from pozzolanic activity. The shear strength was higher than that of general soil. Cohesion and optimum moisture content of anthracite coal ash were higher than bituminous coal ash, whereas the maximum dry density was higher in bituminous coal ash. The coal ash dynamic Young's modulous curve range was similar to that of general soil. Of the results from the soil vibration test by car-running, the size relative acceleration level in the ash pond was higher than that of natural ground, but the damping ratio was lower than that of natural ground near the ash pond. The coal ash has more advantageous engineering properties than general soil with particles of the same size. For example, the California Bearing Ratio of the bottom ash at both Yongdong and Yongwol was 77~137%. Therefore we expect that if further study is done, coal ash can be used as a construction material when reclaiming seashore, construction embankments, road construction, making right-weight aggregate, or as a general construction material.

  • PDF

CHANGES IN WATER USE AND MANAGEMENT OVER TIME AND SIGNIFICANCE FOR AUSTRALIA AND SOUTH-EAST ASIA

  • Knight, Michael J.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.11a
    • /
    • pp.3-31
    • /
    • 1997
  • Water has always played a significant role in the lives of people. In urbanised Rome, with its million people. sophisticated supply systems developed and then fled with the empire. only to be rediscovered later But it was the industrial Revolution commencing in the eighteenth century that ushered in major paradigm shifts In use and altitudes towards water. Rapid and concentrated urbanisation brought problems of expanded demands for drinking supplies, waste management and disease. The strategy of using water from local streams, springs and village wells collapsed under the onslaughts of rising urban demands and pollution due to poor waste disposal practices. Expanding travel (railways. and steamships) aided the spread of disease. In England. public health crises peaks, related to water-borne typhoid and the three major cholera outbreaks occurred in the late eighteenth and early nineteenth century respectively. Technological, engineering and institutional responses were successful in solving the public health problem. it is generally accepted that the putting of water into pipe networks both for a clean drinking supply, as well as using it as a transport medium for removal of human and other wastes, played a significant role in towering death rates due to waterborne diseases such as cholera and typhoid towards the end of the nineteenth century. Today, similar principles apply. A recent World Bank report Indicates that there can be upto 76% reduction in illness when major water and sanitation improvements occur in developing countries. Water management, technology and thinking in Australia were relatively stable in the twentieth century up to the mid to late 1970s. Groundwater sources were investigated and developed for towns and agriculture. Dams were built, and pipe networks extended both for supply and waste water management. The management paradigms in Australia were essentially extensions of European strategies with the minor adaptions due to climate and hydrogeology. During the 1970s and 1980s in Australia, it was realised increasingly that a knowledge of groundwater and hydrogeological processes were critical to pollution prevention, the development of sound waste management and the problems of salinity. Many millions of dollars have been both saved and generated as a consequence. This is especially in relation to domestic waste management and the disposal of aluminium refinery waste in New South Wales. Major institutional changes in public sector water management are occurring in Australia. Upheveals and change have now reached ail states in Australia with various approaches being followed. Market thinking, corporatisation, privatisation, internationalisation, downsizing and environmental pressures are all playing their role in this paradigm shift. One casualty of this turmoil is the progressive erosion of the public sector skillbase and this may become a serious issue should a public health crisis occur such as a water borne disease. Such crises have arisen over recent times. A complete rethink of the urban water cycle is going on right now in Australia both at the State and Federal level. We are on the threshold of significant change in how we use and manage water, both as a supply and a waste transporter in Urban environments especially. Substantial replacement of the pipe system will be needed in 25 to 30 years time and this will cost billions of dollars. The competition for water between imgation needs and environmental requirements in Australia and overseas will continue to be an issue in rural areas. This will be especially heightened by the rising demand for irrigation produced food as the world's population grows. Rapid urbanisation and industrialisation in the emerging S.E Asian countries are currently producing considerable demands for water management skills and Infrastructure development. This trend e expected to grow. There are also severe water shortages in the Middle East to such an extent that wars may be fought over water issues. Environmental public health crises and shortages will help drive the trends.

  • PDF