• 제목/요약/키워드: industrial proteomics

검색결과 29건 처리시간 0.029초

Proteomic Assessment of Dung Beetle, Copris tripartitus Immune Response

  • Suh, Hwa-Jin;Bang, Hea-Son;Kim, Seong-Ryul;Yun, Eun-Young;Park, Kwan-Ho;Kang, Bo-Ram;Kim, Ik-Soo;Jeon, Jae-Pil;Hwang, Jae-Sam
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제17권2호
    • /
    • pp.217-221
    • /
    • 2008
  • Dung beetle larvae at the $3^{rd}$ instar were injected with lipopolysaccaride and inducible proteins were examined within a pI level of 3-10 and a size level by proteomics, including 1-D SDS PAGE analysis and antibacterial assay. The immune infected larvae extracts provided seven protein bands in one-dimensional electrophoresis and its antibacterial activity also checked. Hemolymph protein from immune infected larvae of the dung beetle were separated by twodimensional gel electrophoresis and compared with those from native larvae. In 2-D gel electrophoresis, we detected 63 immune infected unique and 32 up-regulated proteins, and 36 proteins that were down-regulated or not present in treated gel. Ten protein spots from unique proteins and those presented as different level of abundance in infected and native larvae were specially expressed. These differentially expressed proteins were proposed to be involved in the defense mechanism against microorganism.

Systemic Optimization of Microalgae for Bioactive Compound Production

  • Kim, Jeong-Dong;Lee, Choul-Gyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권5호
    • /
    • pp.418-424
    • /
    • 2005
  • The complexity of the biological system/biological systems has been fascinating and challenging for a long time. With the advent of mathematical tools with various omics technology, systems biology was born and is already ubiquitous in every area of biology and biotechnology. Microalgal biotechnology is no exception in this new trend. As tens of microalgal genomes become publicly available on the Internet, vast amounts of data from genomics, transcriptomics, and proteomics are reported everyday. Though there has not yet been enough data gathered on microalgal metabolomics, the in silica models for relatively simple cyanobacteria or for organelles, such as chloroplasts, will appear presently. With the help of systems biology, a more in-depth understanding of microalgae will be possible. Consequently, most industrially-interested microalgae can be metabolically redesigned/reconfigured as cell factories. Microalgae will be served as the hosts in white biotechnology.

웹 기반 데이터베이스로부터의 유용한 데이터 추출 기법의 설계 및 응용 (Design and application of effective data extraction technique from Web databases)

  • 황두성
    • 한국산학기술학회논문지
    • /
    • 제6권4호
    • /
    • pp.309-314
    • /
    • 2005
  • 본 논문에서는 생명공학 정보를 포함하는 분산 웹 데이터베이스들로부터 관련성에 기반하여 목표 데이터를 추출하는 기법들을 분석한다. 더불어 이 분석을 기본으로 단백질 데이터의 지식 확장 방법의 설계 및 구현을 제안한다. 웹 데이터베이스를 위한 데이터 추출기는 수동 추출, 반자동 추출, 자동 추출 방법 등의 구현방법이 가능하다. 웹 데이터 추출기는 해당 웹 페이지에서 목표 데이터를 검색 및 추출하기 위하여 식별자를 이용하는 것이 일반적이다. 본 논문은 웹 데이터 추출 기법을 이용한 유기체 단백질 관련 데이터베이스 시스템의 설계와 구현을 기술한다.

  • PDF

Development and Characterization of an Anti-Acne Gel Containing Siamese Crocodile (Crocodylus siamensis) Leukocyte Extract

  • Phupiewkham, Weeraya;Lu, Qiumin;Payoungkiattikun, Wisarut;Temsiripong, Threeranan;Jangpromma, Nisachon;Lai, Ren;Klaynongsruang, Sompong
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권5호
    • /
    • pp.707-717
    • /
    • 2018
  • Leukocytes are reportedly the first line of the innate immune defense and essential for the control of common bacterial infections. Therefore, in this work, the antibacterial activity of crocodile leukocyte extract against Propionibacterium acnes was evaluated, and we also characterized the related activity of skin infection. The leukocyte extract showed the minimum inhibitory concentration to be $100{\mu}g/ml$ to P. acnes. SEM imaging demonstrated that the leukocyte extract adversely affected P. acnes cell permeability in a concentration-dependent manner. Furthermore, the crocodile leukocyte extract could significantly reduce proinflammatory markers and decrease inflammatory signs in infected mouse ears. The crude leukocyte extract was further purified using FPLC and RP-HPLC. The resulting fraction F5 was indicated as the anti-acne peptide-containing fraction. The molecular mass of the peptide contained in F5 was calculated to be 4,790.5 Da. N-Terminal sequencing revealed the amino acid sequence as GPEPVPAIYQ, which displays similarities to immunoglobulin A and leucine-rich repeat neuronal protein. This is the first reported amino acid sequence of a crocodile leukocyte extract that possesses anti-acne activity. To attempt to use it in a prototype cosmetic, an anti-acne gel containing crude crocodile leukocyte extract was formulated, resulting in seven gel formulations (G1, G2, G3, G4, G5, G6, and G7). The formulations G5, G6, and G7 exhibited 2-fold higher anti-acne activity than G1-G4. Investigation of accelerating stability studies of anti-acne gel formulations G5, G6, and G7 demonstrated that a low storage temperature ($4^{\circ}C$) is suitable for maintaining the physical properties and biological activity of the anti-acne gel products.

Proteomic Analysis of Diesel Oil Biodegradation by Bacillus sp. with High Phosphorus Removal Capacity Isolated from Industrial Wastewater

  • Hee-Jung Kim;Deok-Won Kim;Jin-Hyeok Moon;Ji-Su Park;Eun-Ji Oh;Jin Yoo;Deok-Hyun Kim;Sun-Hwa Park;Keun-Yook Chung
    • 공업화학
    • /
    • 제34권6호
    • /
    • pp.649-659
    • /
    • 2023
  • This study was initiated to evaluate the phosphorus (P) removal and diesel oil degradation by bacteria isolated from industrial wastewater. The bacteria isolated were identified as Bacillus sp. The P removal efficiencies by Bacillus sp. were 99% at the initial 20 mg/L P concentration. The diesel degradation efficiencies by Bacillus sp. were 86.4% at an initial 1% diesel concentration. Lipophilicity by bacteria was the highest in the log phase, whereas it was the lowest in the death phase. As the diesel was used as a carbon source, P removal efficiencies by Bacillus sp. were 68%. When glucose, acetate, and a mixture of glucose and acetate as second carbon sources were added, the diesel degradation efficiencies were 69.22%, 65.46%, and 51.46%, respectively. The diesel degradation efficiency was higher in the individual additions of glucose or acetate than in the mixture of glucose and acetate. When P concentration increased from 20 mg/L to 30 mg/L, the diesel degradation efficiency was increased by 7% from 65% to 72%, whereas when P concentration was increased from 30 mg/L to 40 mg/L, there was no increase in diesel degradation. One of the five proteins identified by proteome analysis in the 0.5% diesel-treated samples may be involved in alkane degradation and is known as the cytochrome P450 system. Also, two of the sixteen proteins identified in the 1.5% diesel-treated samples may be implicated in the fatty acid transport system and alcohol dehydrogenation.

Light/Dark Responsiveness of Kinetin-Inducible Secondary Metabolites and Stress Proteins in Rice Leaf

  • Cho, Kyoung-Won;Kim, Dea-Wook;Jung, Young-Ho;Shibato, Junko;Tamogami, Shigeru;Yonekura, Masami;Jwa, Nam-Soo;Kubo, Akihiro;Agrawal, Ganesh Kumar;Rakwal, Randeep
    • Journal of Crop Science and Biotechnology
    • /
    • 제10권2호
    • /
    • pp.112-116
    • /
    • 2007
  • Kinetin(KN) is an inducer of rice(Oryza sativa L.) defense/stress responses, as evidenced by the induction of inducible secondary metabolite and defense/stress protein markers in leaf. We show a novel light-dependent effect of KN-triggered defense stress responses in rice leaf. Leaf segments treated with KN(100 ${\mu}M$) show hypersensitive-like necrotic lesion formation only under continuous light illumination. Potent accumulation of two phytoalexins, sakuranetin and momilactone A(MoA) by KN that peaks at 48 h after treatment under continuous light is completely suppressed by incubation under continuous dark. Using two-dimensional gel electrophoresis we identified KN-induced changes in ribulose-1, 5-bisphosphate carboxylase/oxygenase, energy- and pathogenesis-related proteins(OsPR class 5 and 10 members) by N-terminal amino acid sequencing and mass spectrometry. These changes were light-inducible and could not be observed in the dark(and control). Present results provide a new dimension(light modulation/regulation) to our finding that KN has a potential role in the rice plant self-defense mechanism.

  • PDF

Utilization of whole genome treasure for the library construction of industrial enzymes

  • Kim, Won-Ho;Cho, Kyoung-Won;Jung, In-Su;Choi, Keum-Hwa;Hur, Byung-Ki;Kim, Geun-Joong
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XIII)
    • /
    • pp.815-820
    • /
    • 2003
  • A huge database resulted from whole genome sequencing has provided a possibility of new information that is likely to extent the scope and thus changes the way of approach for the functional assigning of putative open reading frames annotated by whole genome sequence analyses. These are mainly realized by ease, one-step identification of putative genes using genomics or proteomics tools. A major challenge remained in biotechnology may translate these informations into better ways to screen or select a gene as a representative sequence. Further attempts to mine the related whole genes or partial DNA fragment from whole genome treasure, and then the incorporation of these sequences into a representative template, will result in the use of putative genes that can be translated into functional proteins or allowed the generation of new lineages as a valuable pool. Such screens enable rapid biochemical analysis and easy isolation of the target activity, thereby accelerating the screening of novel enzymes from the expanded library with related sequences. Information-based PCR amplification of whole genes and reconstitution of functional DNA fragments will provide a platform for expanding the functional spaces of potential enzymes, especially when used mixed- or metagenome as gene resources.

  • PDF

Proteomic Evaluation of Cellular Responses of Saccharomyces cerevisiae to Formic Acid Stress

  • Lee, Sung-Eun;Park, Byeoung-Soo;Yoon, Jeong-Jun
    • Mycobiology
    • /
    • 제38권4호
    • /
    • pp.302-309
    • /
    • 2010
  • Formic acid is a representative carboxylic acid that inhibits bacterial cell growth, and thus it is generally considered to constitute an obstacle to the reuse of renewable biomass. In this study, Saccharomyces cerevisiae was used to elucidate changes in protein levels in response to formic acid. Fifty-seven differentially expressed proteins in response to formic acid toxicity in S. cerevisiae were identified by 1D-PAGE and nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) analyses. Among the 28 proteins increased in expression, four were involved in the MAP kinase signal transduction pathway and one in the oxidative stress-induced pathway. A dramatic increase was observed in the number of ion transporters related to maintenance of acid-base balance. Regarding the 29 proteins decreased in expression, they were found to participate in transcription during cell division. Heat shock protein 70, glutathione reductase, and cytochrome c oxidase were measured by LC-MS/MS analysis. Taken together, the inhibitory action of formic acid on S. cerevisiae cells might disrupt the acidbase balance across the cell membrane and generate oxidative stress, leading to repressed cell division and death. S. cerevisiae also induced expression of ion transporters, which may be required to maintain the acid-base balance when yeast cells are exposed to high concentrations of formic acid in growth medium.

항체 : 치료제로서의 부활 (Resurrection of antibody as a therapeutic drug)

  • 정홍근;정준호
    • IMMUNE NETWORK
    • /
    • 제1권1호
    • /
    • pp.7-13
    • /
    • 2001
  • Currently 18 monoclonal antibodies were approved by FDA for inj ection into humans for therapeutic or diagnostic purpose. And 146 clinical trials are under way to evaluate the efficacy of monoclonal antibodies as anti-cancer agents, which comprise 9 % of clinical trials in cancer therapy field. When considering a lot of disappointment and worries existed in this field during the past 15 years, this boom could be called as resurrection. Antibodies have several merits over small molecule drug. First of all it is easier and faster in development, as proper immunization of the target proteins usually raises good antibody response. The side effects of antibodies are more likely to be checked out in immunohistomchemical staining of whole human tissues. Antibody has better pharmacokinetics, which means a longer half-life. And it is non-toxic as it is purely a "natural drug. Vast array of methods was developed to get the recombinant antibodies to be used as drug. The mice with human immunoglobulin genes were generated. Fully human antibodies can be developed in fast and easy way from these mice through immunization. These mice could make even human monoclonal antibodies against any human antigen like albumin. The concept of combinatorial library was also actively adopted for this purpose. Specific antibodies can be screened out from phage, mRNA, ribosomal library displaying recombinant antibodies like single chain Fvs or Fabs. Then the coding genes of these specific antibodies are obtained from the selected protein-gene units, and used for industrial scale production. Both $na\ddot{i}ve$ and immunized libraries are proved to be effective for this purpose. In post-map arena, antibodies are receiving another spotlight as molecular probes against numerous targets screened out from functional genomics or proteomics. Actually many of these antibodies used for this purpose are already human ones. Through alliance of these two actively growing research areas, antibody would play a central role in target discovery and drug development.

  • PDF