DOI QR코드

DOI QR Code

Proteomic Analysis of Diesel Oil Biodegradation by Bacillus sp. with High Phosphorus Removal Capacity Isolated from Industrial Wastewater

  • Hee-Jung Kim (Department of Public Administration, Chungbuk National University) ;
  • Deok-Won Kim (Department of Earth Resources and Environmental Engineering, Hanyang University) ;
  • Jin-Hyeok Moon (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Ji-Su Park (EHS Part, Doosan Corporation Electro-Materials) ;
  • Eun-Ji Oh (Water and Land Research Group/Division for Natural Environment, Korea Environment Institute) ;
  • Jin Yoo (Indoor Environment Division, Incheon Research Institute of Public Health and Environment) ;
  • Deok-Hyun Kim (Chemical Accident Investigation Team, National Institute of Chemical Safety) ;
  • Sun-Hwa Park (National Institute of Environmental Research) ;
  • Keun-Yook Chung (Department of Environmental and Biological Chemistry, Chungbuk National University)
  • Received : 2023.08.08
  • Accepted : 2023.11.13
  • Published : 2023.12.10

Abstract

This study was initiated to evaluate the phosphorus (P) removal and diesel oil degradation by bacteria isolated from industrial wastewater. The bacteria isolated were identified as Bacillus sp. The P removal efficiencies by Bacillus sp. were 99% at the initial 20 mg/L P concentration. The diesel degradation efficiencies by Bacillus sp. were 86.4% at an initial 1% diesel concentration. Lipophilicity by bacteria was the highest in the log phase, whereas it was the lowest in the death phase. As the diesel was used as a carbon source, P removal efficiencies by Bacillus sp. were 68%. When glucose, acetate, and a mixture of glucose and acetate as second carbon sources were added, the diesel degradation efficiencies were 69.22%, 65.46%, and 51.46%, respectively. The diesel degradation efficiency was higher in the individual additions of glucose or acetate than in the mixture of glucose and acetate. When P concentration increased from 20 mg/L to 30 mg/L, the diesel degradation efficiency was increased by 7% from 65% to 72%, whereas when P concentration was increased from 30 mg/L to 40 mg/L, there was no increase in diesel degradation. One of the five proteins identified by proteome analysis in the 0.5% diesel-treated samples may be involved in alkane degradation and is known as the cytochrome P450 system. Also, two of the sixteen proteins identified in the 1.5% diesel-treated samples may be implicated in the fatty acid transport system and alcohol dehydrogenation.

Keywords

Acknowledgement

This research was supported by Chungbuk National University Korea National University Development Project (2022).

References

  1. M. C. Guinness and M. D. Dowling, Plant-associated bacterial degradation of toxic organic compounds in soil, Int. J. Environ. Res. Public Health, 6, 2226-2247 (2009). https://doi.org/10.3390/ijerph6082226
  2. C. B. Chikere, C. C. Obieze, and B. O. Chikere, Biodegradation of artisanally refined diesel and the influence of organic wastes on oil-polluted soil remediation, Sci. Afr., 8, 385 (2020).
  3. S. H. Hong and K. S. Cho, Effects of plant rhizobacteria and physicochemical factors on the phytoremediation of contaminated Soil, Kor. J. Microbiol. Biotechnol., 35, 261-271 (2007).
  4. G. Kebede, T. Tafese, E. M. Abda, M. Kamaraj, and F. Assefa, Factors influencing the bacterial bioremediation of hydrocarbon contaminants in the soil: mechanisms and impacts, J. Chem., 17, (2021).
  5. M. Alexander, Biodegradation and Bioremediation, 2nd ed., 213-227, Academic Press, CA, USA (1994).
  6. M. A. Rao, R. Scelza, R. Scotti, and L. Gianfreda, Role of enzymes in the remediation of polluted environments, J. Soil Sci. Plant Nutr., 10, 333-353 (2010).
  7. E. Koshlaf and A. S. Ball, Soil bioremediation approaches for petroleum hydrocarbon polluted environments, AIMS Microbiol., 3, 25-49 (2017). https://doi.org/10.3934/microbiol.2017.1.25
  8. L. F. Machaado, D. C. de Assis Leite, C. T. C. de Costa Rachid, J. E. Paes, E. F. Martins, R. S. Peixoto, and A. S. Rosado, Tracking mangrove oil bioremediation approaches and bacterial diversity at different depths in an in situ mesocosms system, Front. Microbiol., 10, 2107 (2019).
  9. G. Zafra, R. Regino, B. Agiaualimpia, and F. Aguilar, Molecular characterization and evaluation of oil-degrading native bacteria isolated from automotive service station oil-contaminated soils, Chem. Eng. Trans., 49, 511-516 (2016).
  10. A. Horel and S. Schiewer, Microbial degradation of different hydrocarbon fuels with mycoremediation of volatiles, Microorganisms, 8, 163 (2020).
  11. R. S. Peixoto, A. B. Vermelho, and A. S. Rosado, Petroleum degrading enzymes: bioremediation and new prospects, Enzyme Res., 1, 1-7 (2011).
  12. R. N. Austin and A. V. Callaghan, Microbial enzymes that oxidize hydrocarbons, Front. Microbiol., 4, 338 (2013).
  13. F. Rojo, Aerobic Utilization of Hydrocarbons, Oils and Lipids (Handbook of Hydrocarbon and Lipid Microbiology), 1st ed., 124-139, Springer, NY, USA (2019).
  14. H. Haller, A. Jonsson, J. Ljunggren, and E. Hedenstrom, Appropriate technology for soil remediation in tropical low-income countries-a pilot scale test of three different amendments for accelerated biodegradation of diesel fuel in Ultisol, Cogent Environ. Sci., 6, 1-11 (2020).
  15. G. P. Nam, Bioavailability of environmental pollutant and bioremediation based on risk assessment, Korean Microbiol. Biotech., 14, 21-28 (2001).
  16. A. Mittal and P. Singh, Isolation of hydrocarbon-degrading bacteria from soils contaminated with crude oil spills, Indian J. Exp. Biol., 47, 760-765 (2009).
  17. G. O. Adams, P. T. Fufeyin, S. E. Okoro, and I. Ehinomen, Bioremediation, biostimulation, and bioaugmentation: A review, Int. J. Environ. Bioremedat. Biodegrad., 3, 28-39 (2015).
  18. A. Engl and B. Kunz, Biosorption of heavy metals by Saccharomyces cerevisiae: Effects of nutrient conditions, J. Chem. Technol. Biotechnol., 63, 257-261 (1995). https://doi.org/10.1002/jctb.280630310
  19. A. Converti, C. Rovatti, and M. Del Borgh, Biological removal of phosphorus from wastewaters by alternating aerobic and anaerobic conditions, Water Res., 29, 263-269 (1995). https://doi.org/10.1016/0043-1354(94)E0118-P
  20. C. Zafiri, M. Kornaros, and G. Lyberatos, Kinetic modeling of biological phosphorus removal with a pure culture of Acinetobacter sp. under aerobic, anaerobic, and transient operating conditions, Water Res., 33, 2769-2788 (1999). https://doi.org/10.1016/S0043-1354(98)00522-3
  21. J. R. Lee, L. H. Yang, and H. Y. Lee, Designing a decision-making system of inferring reasonable O2 quantity needed to process wastewater via biological reaction, J. Korean Inst. llum. Electr. Install. Eng., 15, 89-96 (2001).
  22. F. M. Ghazali, R. N. Z. A. Rahman, A. B. Salleh, and M. Basri, Biodegradation of hydrocarbons in soil by microbial consortium, Int. Biodeterior. Biodegradation, 54, 61-67 (2004). https://doi.org/10.1016/j.ibiod.2004.02.002
  23. S. D. Lima, A. F. Oliveira, R. Golin, V. C. P. Lopez, D. S. Caixeta, Z. M. Lima, and E. B. Morais, Isolation and characterization of hydrocarbon-degrading bacteria from gas station leaking-contaminated groundwater in the Southern Amazon, Braz. J. Biol., 80, 354-361 (2019).
  24. D. Maliji, Z. Olama, and H. Holail, Environmental studies on the microbial degradation of oil hydrocarbons and its application in Lebanese oil polluted coastal and marine ecosystem, Int. J. Curr. Microbiol. App. Sci., 2, 1-18 (2013).
  25. S. Sihag, H. Pathak, and D. P. Jaroli, Factors affecting the rate of biodegradation of polyaromatic hydrocarbons, Int. J. Pure Appl. Biosci., 2, 185-202 (2014).
  26. V. K. Chaudhary and D. Borah, Isolation and molecular characterization of hydrocarbon-degrading bacteria from tannery effluent, Int. J. Plant Animal Env. Sci., 1, 36-49 (2011).
  27. W. Wang and Z. Shao, Enzymes and genes involved in aerobic alkane degradation, Front. Microbiol., 4, 116 (2013).
  28. K. Prathyusha, Y. S. Y. V. Jagan Mohan, S. Sridevi, and B. V. Sandeep, Isolation and characterization of petroleum hydrocarbon degrading indigenous bacteria from contaminated sites of Visakhapatnam, Int. J. Adv. Res., 4, 357-362 (2016).
  29. G. Cardini and P. Jurtshuk, The enzymatic hydroxylation of n-octane by Corynebacterium sp. strain 7E1C, J. Biol. Chem., 245, 2789-2796 (1970). https://doi.org/10.1016/S0021-9258(18)63058-3
  30. R. Muller, O. Asperger, and H. P. Klever, Purification of cytochrome P-450 from n-hexadecane grown Acinetobacter calcoaceticus, Biomed. Biochem. Acta, 48, 243-254 (1989).
  31. G. G. Yagafarova and I. N. Skvortsova, A new oil-oxidizing strain of Rhodococcus erythropolis, Appl. Biochem. Microbiol., 32, 207-209 (1996).
  32. J. H. Choi, T. K. Kim, Y. M. Kim, W. C. Kim, G. J. Joo, K. Y. Lee, and I. K. Rhee, Cloning and characterization of cyclohexanol dehydrogenase gene from Rhodococcus sp. TK6, J. Microbiol. Biotechnol., 15, 1189-1196 (2005).
  33. H. J. Park, H. J. Park, G. N. Eom, and H. G. Kim, Isolation of Rhodococcus erythropolis producing the enzyme degrading Nitrile and its characteristics, J. Microbiol. Biotechnol., 34, 204-210 (2006).
  34. S. H. Han, J. W. Kim, S. W. Jeon, S. H. Park, H. M. Park, S. K. Min, and M. C. Jung, Evaluation of potential utility of reclaimed soil from remediation sites, J. Soil Groundwater Environ., 26, 27-35 (2021).
  35. Ministry of Environment, The 2nd basic plan for the conservation of the soil environment (2020~2029), Ministry of Environment, 23-39 (2020).
  36. S. Fijalkowska, K. Lisowska, and J. Dlugonsik, Bacterial elimination of polycyclic hydrocarbons and heavy metals, J. Basic Microbiol., 38, 361-369 (1998).
  37. B. Smreczak, B. Maliszewska-Kordybach, and S. Martyniuk, Effect of PAHs and heavy metals on activity of soil microflora. In : P. Baveye, J.-C. Block, and V. V. Goncharuk (eds.). Bioavailability of Organic Xenobiotics in the Environment, NATO ASI series, 64, 377-380, Springer, Dordrecht, Netherlands (1999).
  38. J. Sokhn, F. A. De Leij, T. D. Hart, and J. M. Lynch, Effect of copper on the degradation of phenanthrene by soil micro-organisms, Lett. Appl. Microbiol., 33, 164-168 (2001). https://doi.org/10.1046/j.1472-765x.2001.00972.x
  39. C. O. Adenipekun and O. S. Isikhuemhen, Bioremediation of engine oil polluted soil by the tropical white rot fungus, Lentinus squarrosulus Mont. (singer), Pak. J. Biol. Sci., 11, 1634-1637 (2008). https://doi.org/10.3923/pjbs.2008.1634.1637
  40. A. A. Adeniyi and O. J. Owoade, Total petroleum hydrocarbons and trace heavy metals in roadside soils along the lagos-badagry Expressway, Environ. Monit. Assess., 167, 625-630 (2009). https://doi.org/10.1007/s10661-009-1078-3
  41. S. H. Mirdamadian, G. Emtiazi, M. H. Golabi, and H. Ghanavati, Biodegradation of petroleum and aromatic hydrocarbons by bacteria isolated from petroleum-contaminated soil, J. Pet. Environ. Biotechnol., 1, 102 (2010).
  42. S. H. Hong, Rhizoremediation of Oil and Heavy Metal-contaminated Soil, 17-24, PhD Dissertation, Ewha Women University, Seoul, Korea (2010).
  43. K. Patel Nilesh and H. Pethapara, Isolation and screening of hydrocarbon-degrading bacteria from soil near Kadi (Gujarat) region, Int. J. Res. BioSciences, 2, 10-16 (2013).
  44. A. Khalifa, Degradation of diesel-oil by a newly isolated Kocuria sediminis DDK6, Afr. J. Microbiol. Res., 11, 400-407 (2017). https://doi.org/10.5897/AJMR2016.8413
  45. C. Y. Fan and S. Krishnamurthy, Enzymes for enhancing bioremediation of petroleum-contaminated soils: A brief review, J. Air Waste Manage. Assoc., 45, 453-460 (1995). https://doi.org/10.1080/10473289.1995.10467375
  46. National Institute of Environmental Research, Water pollution standard method (2022).
  47. Y. Zhang and R. M. Miller, Effect of Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane, Appl. Environ. Microbiol., 60, 2101-2106 (1994). https://doi.org/10.1128/aem.60.6.2101-2106.1994
  48. M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dey binding, Anal. Biochem., 72, 248-254 (1976). https://doi.org/10.1016/0003-2697(76)90527-3
  49. Korean Human Proteomic Organization, Methods in Proteomics, 1st ed., 100-121, E. Public, Seoul, Korea (2007).
  50. J. M. Bland and D. G. Altman, Multiple significance tests: The Bonferroni method, BRIT. MED. J., 310, 170 (1995).
  51. D. G. Altman, Practical Statistics for Medical Research, 1st ed., 210-211, Chapman and Hall, London, UK (1991).
  52. J. B. Eweis, S. J. Ergas, D. P. Y. Chang, and E. D. Schroeder, Bioremediation Principles, McGraw-Hill Book Company Europe, Maidenhead, UK, 17-20 (1998).
  53. I. M. Banat, R. S. Makkar, and S. S. Cameotra, Potential commercial applications of microbial surfactants, Appl. Microbiol. Biotechnol., 53, 495-508 (2000). https://doi.org/10.1007/s002530051648
  54. K. Rahman, T. J. Rahman, Y. Kourkoutas, I. Petsas, R. Marchant, and I. Banat, Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients, Bioresour. Technol., 90, 159-168 (2003). https://doi.org/10.1016/S0960-8524(03)00114-7
  55. A. B. Al-Hawash, M. A. Dragh, S. Li, A. Alhujaily, H. A. Abbood, X. Zhang, and F. Ma, Principles of microbial degradation of petroleum hydrocarbons in the environment, Egypt. J. Aquat. Res., 44, 71-76 (2018). https://doi.org/10.1016/j.ejar.2018.06.001
  56. S. H. Ko, H. K. Lee, and S. J. Kim, Effect of bacterial mixture on the degradation of petroleum oil according to hydrocarbon uptake modes, KSBB J., 13, 606-614 (1998).
  57. S. C. No, C. H. Lee, and D. J. Jung, Effect of environmental factors on the bioremediation of diesel oil-contaminated soil, Korean J. Biotechnol., 14, 503-510 (1999).
  58. B. M. Macaulay, Understanding the behavior of oil-degrad ing micro-organisms to enhance the microbial remediation of spilled petroleum, Appl. Ecol. Environ. Res., 13, 247-262 (2015).
  59. J. E. Zajic, H. Guignard, and D. F. Gerson, Properties and biodegradation of a bioemulsifier from corynebacterium hydrocarboclastus, Biotechnol. Bioeng., 9, 1303-1320 (1997).
  60. J. H. Lim and S. Y. Jeong, Emulsifying activity of Acinetobacter sp. 2-3A isolated from diesel oil-contaminated soil, J. Environ. Sci., 18, 1261-1270 (2009).
  61. S. H. Ko, G. H. Lee, and S. J. Kim, Effect of bacterial consortium on the degradation of diesel oil according to hydrocarbon uptake modes, Korean J. Biotechnol., 13, 606-614 (1998).
  62. H. J. Yim, Effect of Nutrient Addition on Bioremediation of Oil Contaminated Soil and Microbial Characteristics, MSc Thesis, Yeongnam University, Gyeongsan, Korea (2005).
  63. D. L. Nelson and M. M. Cox, Leninger Principles of Biochemistry, 7th ed., 475-488, W. H. Freeman & Company, NY, USA (2017).
  64. N. L. Anderson and N. G. Anderson, Proteome and proteomics: new technologies, new concepts, and new words, Electrophoresis, 19, 1853-1861 (1998). https://doi.org/10.1002/elps.1150191103
  65. W. P. Blackstock and M. P. Weir, Proteomics: Quantitative and physical mapping of cellular proteins, Trends Biotechnol., 17, 121-127 (1999). https://doi.org/10.1016/S0167-7799(98)01245-1
  66. J. D. Anderson, H. J. Johansson, C. S. Graham, M. Vesterlund, M. T. Pham, C. S. Bramlett, E. N. Montgomery, M. S. Mellema, R. L. Bradini, Z. Contreras, M. Hoon, G. Bauer, K. D. Fink, B. Fury, K. J. Hendrix, F. Credin, S. EL-Andaloussi, B. Hwang, M. S. Mulligan, J. Letio, and J. A. Nolta, Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-kappaB signaling, Stem Cells, 34, 601-613 (2016). https://doi.org/10.1002/stem.2298
  67. L. Hood and L. Rowen, The human genome project: Big science transforms biology and medicine, Genome Med., 5, 79 (2013).
  68. S. M. Yeo, and Y. O. Lee, Change of microbial community structure affected by carbon sources in the phosphorus removal process, J. Korean Soc. Environ. Eng., 28, 165-172 (2006).